Warianty tytułu
Języki publikacji
Abstrakty
The significant occurrence of bearing faults in electrical machines necessitates continuous online monitoring of the machine’s operating data with the main objective of ensuring both high reliability and efficiency and therefore minimising the chance of unwanted breakdowns. This work focuses on the simulation of (defective) bearings, utilising a dedicated model with five degrees of freedom (DOF) (translational motion) in conjunction with an induction motor model. The primary objective is to gain a comprehensive understanding of how faulty bearings influence both the entire bearing itself and the machine, mainly concerning vibration signals and additional frictional torque. Additionally, various shapes of spalls on the raceway(s) are described, analysed and compared. This work is an extended version of the conference paper ‘Simulating Rolling Element Bearing Defects in Induction Machines’, presenting additional information on how to simulate spalls (with different shapes and sizes) on the inner ring of the bearing. Furthermore, the so-obtained vibration signal is examined and a method is proposed aiming to verify the simulation results and to predict the location of the spall (raceway of the inner or outer ring).
Czasopismo
Rocznik
Tom
Strony
540--561
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Chair of Electrical Engineering, Montanuniversitaet Leoben, Austria, florian.floh@unileoben.ac.at
autor
- Chair of Electrical Engineering, Montanuniversitaet Leoben, Austria
autor
- Chair of Electrical Engineering, Montanuniversitaet Leoben, Austria and Austrian Institute of Technology, Vienna
Bibliografia
- Floh, F. and Weiss, H. (2023). On the simulation of bearing faults in induction machines. In: Proceedings of the 36th International Conference on Electrical Drives and Power Electronics EDPE. The High Tatras, 25–27 September 2023. doi: 10.1109/EDPE58625.2023.10274044.
- Giersch, H. U., Harthus, H. and Vogelsang, N. (1991). Elektrische Maschinen. B.G. Teubner Stuttgart., Stuttgart. [ISBN: 3-519-26821-26823]
- Gonzalo, A. (2017). Power Electronics and Electric Drives for Traction Application. Wiley, West Sussex. [ISBN: 978-1-118-95442-95443]
- Gupta, P. K. (1975). Transient Ball Motion and Skid in Ball Bearings. Journal of Lubrication Technology, 97(2), pp. 261–269. doi: 10.1115/1.3452568
- Gupta, P. K. (1979). Dynamics of Rolling Element Bearings Part I: Cylindrical Roller Bearing Analysis. Journal of Lubrication Technology, 101(3), pp. 293–302. doi: 10.1115/1.3453357
- Howard, I. (1994). A Review of Rolling Element Bearing Vibration ‘Detection, Diagnosis and Prognosis’. Australia: DSTO Aeronautical and Maritime Research Laboratory.
- Krishnan, R. (2001). Electric Motor Drives: Modeling, Analysis, and Control. New Jersey: Prentice Hall. [ISBN: 978-0130910141]
- Kumbhar, S. G., Sudhagar, E. and Desavale, R. (2021). An Overview of Dynamic Modeling of Rolling-Element Bearings. Noise & Vibration Worldwide, 52(1–2), pp. 3–18. doi: 10.1177/0957456520948279
- Leedy, A. W. (2013). Simulink/ MATLAB Dynamic Induction Motor Model for Use as a Teaching and Research Tool. International Journal of Soft Computing and Engineering (IJSCE), 3(4), pp. 102–108.
- Lundberg, G. and Palmgren, A. (1947). Dynamic Capacity of Rolling Bearing. Acta Polytechnic Mechanical Engineering Series, 1(3), pp. 165-172
- Meinel, A. (2020). Experimentelle Untersuchung der Auswirkungen von Axialschwingungen auf Reibung und Verschleiß in Zylinderrollenlagern. PhD-Thesis. Erlangen FAU University Press.
- Mishra, C., Samantaray, A. K. and Chakraborty, G. (2017). Ball Bearing Defect Models: A Study of Simulated and Experimental Fault Signatures. Journal of Sound and Vibration, 400, pp. 86–112. doi: 10.1016/j.jsv.2017.04.010
- Nandi, S., Toliyat, H. A. and Li, X. (2005). Condition Monitoring and Fault Diagnosis of Electrical Motors – A Review. IEEE Transactions on Energy Conversion, 20(4), pp. 719–729. doi: 10.1109/TEC.2005.847955
- Quang, N. P. and Dittrich, J. A. (2008). Vector Control of Three-Phase AC Machines. Springer, Heidelberg. [ISBN: 978-3-540-79028-79020]
- Sawalhi, N. and Randall, R. B. (2008). Simulating Gear and Bearing Interactions in the Presence of Faults. Part I. The Combined Gear Bearing Dynamic Model and the Simulation of Localized Bearing Faults. Mechanical Systems and Signal Processing, 22(8), pp. 1924–1951. doi: 10.1016/j.ymssp.2007.12.001
- SKF. (2022). Bearing Damage Analysis: ISO 15243 Is Here to Help You. SKF Evolution. Available at: https://evolution.skf.com/bearing-damage-analysisiso-15243-is-here-to-help-you/. [Accessed 8 Sep. 2024].
- Smagala, A. and Kecik, K. (2019). Nonlinear Model and Simulation of a Rolling Bearing. IOP Conference Series Materials Science and Engineering,710, pp. 1–8. doi: 10.1088/1757899X/710/1/012006
- Sopanen, J. and Mikkola, A. (2003a). Dynamic Model of a Deep Groove Ball Bearing Including Localized and Distributed Defects, Part 1: Theory. Journal of Multi-body Dynamics, 217(3), pp. 201–211. doi: 10.1243/14644190360713551
- Sopanen, J. and Mikkola, A. (2003b). Dynamic Model of a Deep Groove Ball Bearing Including Localized and Distributed Defects, Part 2: Implementation and Results. Journal of Multi-body Dynamics, 217(3), pp. 213–223. doi: 10.1243/14644190360713560
- Strangas, E. G., Clerc, G., Razik, H. and Soualhi, A. (2022). Fault Diagnosis, Prognosis, and Reliability for Electrical Machines and Drives. Wiley, Hoboken, New Jersey. [ISBN: 978-1-119-72275-72275]
- Thorsen, V. and Dalva, M. (1995). A Survey of Faults on Induction Motors in Offshore Oil Industry, Petrochemical Industry, Gas Terminals, and Oil Refineries. IEEE Transactions on Industry Applications, 35(5), pp. 1186–1196. doi: 10.1109/28.464536
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ebff3136-2865-4376-8646-ff0ffa44d06e