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1. Introduction
Since its invention in the late 19th century, persistent endeavours have been taken for the development of the 
induction motor, while the primary focus includes increasing both its reliability and the overall efficiency. Contemporary 
industrial applications are designed that the induction motor is fed by an inverter, facilitating variable speeds of the 
output shaft and greater torque during start-ups (Fischer, 1995; Giersch et al., 1991).

Although inverter-fed induction machines serve as a robust drive system solution, common breakdowns often 
originate from stator and/or rotor winding failures, defective bearings, irregularities in the air gap or faulty auxiliary 
parts (such as fan blades) (Strangas et al., 2022). As illustrated in Figure 1, bearing faults emerge as the foremost 
cause for breakdowns, accounting for approximately 40% of breakdowns in high power motors (especially in 
petrochemical applications). In low- and medium-power electric motors, bearing faults are responsible for 8% of 
breakdowns, as can be seen in Figure 2.

Among various factors, bearing defects are primarily due to the result of contamination of the mating surfaces 
with foreign solid particles, inadequate or absent lubrication, corrosion, excessive loads or misalignment (during the 
installation). To elevate the efficiency and operational reliability of electrical machines (especially induction motors), 
detection of occurring faults at an early stage is a key factor for decreasing the chance of a potential breakdown of 
the entire drive system (Nandi et al., 2005; Strangas et al., 2022).

Figure 3 provides a thorough insight into how various fault types affect the frictional torque created by the 
examined bearing and compares it to the ‘healthy’ one. During the testing procedure, the quantities that are 
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Figure 1. Prevalence of different fault types in high power motors in petrochemistry, derived from Floh and Weiss (2023) and Thorsen and Dalva 
(1995).

Figure 2. Prevalence of different fault types in low and medium power motors, derived from Floh and Weiss (2023) and Strangas et al. (2022).

Figure 3. Comparison of the frictional torques of a healthy bearing (a), with defective ones (b–d). Measured with a real 0.37 kW machine. Adapted 
from Floh and Weiss (2023).
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measured and tracked are the torque (using a torque transducer) and the shaft speed, while the investigated 
bearings are subjected to an axial load. In this illustration, the substantial difference in frictional torque between the 
corroded bearing (Figure 3d) and the healthy one (Figure 3a) is attributed to the entire absence of lubrication and 
the extensive level of corrosion present in both the inner and the outer raceway, as well as the cage and the rolling 
elements. Results of the examined contaminated bearing are depicted in Figure 3b. This bearing is subjected to a 
contamination of solid metal particles of size less than 1 mm. Data gathered from the bearing that exhibits a defect 
on the outer ring, to be more specific, a spall that measures approximately 1.4 mm in width (perpendicular to the 
raceway) and 1 mm in depth, are shown in Figure 3c.

One important aspect, which has to be emphasised, is shown in Figure 3, in which the upper and lower lines of 
the boxes characterise the upper and lower quartiles denoting 0.75 and 0.25 quantiles, respectively. The horizontal 
lines within the boxes represent the median values, which are connected to each other via a red line. In addition to 
this, the non-outlier maximum and minimum values are indicated by the vertical lines extending above and below 
the upper and lower quartiles (Floh and Weiss, 2023).

To obtain a deeper understanding of how various bearing faults impact induction machines, such as increased 
frictional torques and vibration, the authors propose a further extension of a dynamic bearing model, where the 
localised faults on the inner and/or outer raceway are simulated in different shapes (triangular and parabolic), 
yielding more realistic results regarding the vibrational signal.

In addition to this, the so-obtained numerical data are then compared to similar faults in a real bearing application, 
which illustrates that both findings do agree well in the case of parabolic-shaped faults (both on the inner and outer 
raceway of the examined bearing).

However, defective bearings do not necessarily have to result in a breakdown of the entire machine. In an 
early stage of an occurring fault, the efficiency of the examined motor is decreased, as a consequence of the 
additional frictional torque, as depicted in Figure 4. The investigated bearings were deep groove ball bearing (6203-
Z), mounted in an induction machine with a rated output power of 0.37 kW. A variable torque load was applied with 
the help of an eddy current brake and measured with a torque transducer.

For instance, comparison of a machine with a healthy bearing to that with a contaminated (with solid particles 
of size <1 mm) bearing illustrates that the efficiency in the nominal operating point (approximately 1415 rpm and 
2.5 Nm) decreases from 71% to approximately 67.5% for the faulty one (see Figure 4). The same phenomenon can 
also be found with other defects, as depicted in Figures 3c,d.

Figure 4. Comparison of the efficiency of a machine with healthy bearings (a) to that with defective ones (b–d). Measurements taken in a real 0.37 kW 
induction machine.
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Figure 5. Comparison of the SPL of a machine with healthy bearings (a) to that with defective ones (b–d), measured at a distance of 1 m from the 
examined machine. SPL, sound pressure level.

Furthermore, another issue that arises in a machine with defective bearings is an increase in sound pressure 
level (SPL), which is shown in Figure 5. The relatively high SPL of the corroded bearing compared to the healthy 
one is explained by the complete lack of lubricant and corroded mating surfaces inside the bearing.

2. Dynamic Model of an Induction Machine
The first step of this proposed method consists of modelling the induction motor (with previously identified parameters 
from a 0.37 kW machine) in the MATLAB/Simulink R2022b from MathWorks environment. The required (differential) 
equations for the model are derived from the T-type equivalent circuits (as illustrated in Figures 6 and 7), both in 
direct axis (d-axis) and quadrature axis (q-axis). The superscripts on the rotor side of the equivalent circuits (right-
hand side) indicate that these quantities are referenced to the stator side. In addition to this, the subscripts r, s, d 
and q denote that these quantities refer to the rotor, stator and d- and q-axes, respectively (Floh and Weiss, 2023).

Here, the resistances and inductances of both rotor and stator are assumed to be constant and state-independent, 
which still yields comparable results with the real machine, as used in the scope of this work. However, if one wants 

Figure 6. T-type dq-equivalent circuit (d-axis) of an induction machine. Adapted from Gonzalo (2017).
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to consider non-linearities, such as iron losses, magnetic saturation or current displacement, Quang and Dittrich 
(2008) provided an overview on how to include them in the model.

By applying Kirchhoff’s law to the left side of the T-type equivalent circuits (both on d- and q-axes), the following 
equations can be derived:

0sd
sd sd s e sq

du i R
dt
λω λ− + − + =  (1)

0sq
sq sq s e sd

d
u i R

dt
λ

ω λ− + − + =  (2)

The same procedure can be performed on the right-hand side (rotor side):

( ) 0rd
rd rd r e r rq

du i R
dt
λω ω λ
′

′ ′ ′ ′− + − − + =  (3)

( ) 0rq
rq rq r e r rd

d
u i R

dt
λ

ω ω λ
′

′ ′ ′ ′− + − − + =  (4)

Voltages applied to the stator are characterised by sdu  and squ , whereby the rotor voltages (referenced to 
the stator side) are represented by rdu′  and rqu′ . Considering an induction motor with a squirrel cage rotor, rdu′  
and rqu′  are equal to zero, since the rotor bars are shortened on both ends, which results in a negligible voltage 
drop. The resistances of the stator and rotor windings are represented by sR  and rR′. The quantities sdi , sqi , rdi′  and 
rqi′  characterise the currents, whereas sdλ , sqλ , rdλ′  and rqλ′  characterise the flux linkages of the stator and rotor, 
respectively. In addition to this, rω  and eω  represent the rotational speed of the rotor and that of the reference frame 
(Leedy, 2013).

To obtain a more compact representation of Eqs (1)–(4), they can be written in matrix-form as follows:

0 1
1 0

sd sd sd sd
s e

sq sq sq sq

u id R
u idt

λ λ
ω

λ λ
        

= − +        −        
 (5)

0 1
( )

1 0
rd rd rd rd

r e r
rq rq rq rq

u id R
u idt

λ λ
ω ω

λ λ
′ ′ ′ ′        ′= − + −        ′ ′ ′ ′−               

 (6)

To describe the flux linkages of the rotor and stator, their self-inductances rL  and sL  need to be formulated with 
the help of their leakage inductances 

sLL  and 
RLL  as well as their mutual inductance mL  (Leedy, 2013):

ss L mL L L= +  (7)

rr L mL L L= +  (8)

Figure 7. T-type dq-equivalent circuit (q-axis) of an induction machine. Adapted from Gonzalo (2017).
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Therefore, the equations of the flux linkages can be described in the following manner (Leedy, 2013):

sd sd s rd mi L i Lλ ′= +  (9)

sq sq s rq mi L i Lλ ′= +  (10)

rd rd r sd mi L i Lλ′ ′= +  (11)

rq rq r sq mi L i Lλ′ ′= +  (12)

Again, Eqs (9)–(12) can be represented in a more compact manner, which yields:

0 0
0 0

0 0
00

sdsd s m

sqsq s m

rdrd rm

mrq r rq

iL L
iL L
iLL

L L i

λ
λ

λ
λ

    
    
    =      ′′
    ′ ′       

 (13)

Next, the currents sdi , sqi , rdi′  and rqi′  can be represented by rearranging Eqs (9)–(12):

sd rd m
sd

s

i Li
L

λ ′−
=  (14)

sq rq m
sq

s

i L
i

L
λ ′−

=  (15)

rd sd m
rd

r

i Li
L

λ′ −′ =  (16)

rq sq m
rq

r

i L
i

L
λ′ −

′ =  (17)

To get the currents in an explicit manner, Eqs (14)–(17) have to be inserted into each other, which yields:

2 2
r m

sd sd rd
s r m s r m

L Li
L L L L L L

λ λ′= −
− −  (18)

2 2
r m

sq sq rq
s r m s r m

L Li
L L L L L L

λ λ′= −
− −  (19)

2 2
s m

rd rd sd
s r m s r m

L Li
L L L L L L

λ λ′ ′= −
− −  (20)

2 2
s m

rq rq sq
s r m s r m

L Li
L L L L L L

λ λ′ ′= −
− −  (21)

Rearranging Eqs (18)–(21) in matrix form yields a more compact representation:

2

0 0
0 01

0 0
0 0

sd sdr m

sq sqr m

rdrd m ss r m

rqm srq

i L L
i L L
i L LL L L

L Li

λ
λ
λ
λ

  −   
    −    =   ′ ′ −−
     ′′ −        

 (22)
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Finally, to obtain the desired differential equations that are the bases of the Simulink model, Eqs (1)–(4) have to 
be rearranged and inserted into Eqs (18)–(21), resulting in:

2
sd r sd m rd

sd s e sq
s r m

d L Lu R
dt L L L
λ λ λ ω λ

 ′−
= − + 

− 
 (23)

2
sq r sq m rq

sq s e sd
s r m

d L L
u R

dt L L L
λ λ λ

ω λ
′ −

= − −  − 
 (24)

( )2
rd s rd m sd

rd r e r rq
s r m

d L Lu R
dt L L L
λ λ λ ω ω λ

 ′ ′ −′ ′ ′= − + − 
− 

 (25)

( )2
rq s rq m sq

rq r e r rd
s r m

d L L
u R

dt L L L
λ λ λ

ω ω λ
′ ′ −

′ ′ ′= − + −  − 
 (26)

In the case of a squirrel-cage rotor, the voltages rdu′  and rqu′  vanish due to the rotor bars shortened at both ends 
(Leedy, 2013).

After obtaining the currents sdi , sqi , rdi′  and rqi′ , the electromagnetic torque emT  is computed in the following manner:

( )3 ,
2em m sq rd sd rqT pL i i i i′ ′= −  (27)

where the quantity p represents the number of pole pairs of the examined machine (Leedy, 2013).
The net output torque on the shaft is computed by taking the load torque LT , the frictional torque FricT  and the rotor 

inertia J  into consideration (Krishnan, 2001):

r
net em L Fric

dT T T J T
dt
ω = − + + 

 
 (28)

Any additional frictional torque FricT , which is attributable to a defective bearing inside the machine, can therefore 
be considered in Eq. (28).

The previously described equations included quantities (currents and voltages), which are referenced to the dq 
reference frame. To convert the voltage sources from the abc system to the αβ  frame in the first step, the so-called 
‘Direct Clark Transform’ can be applied (Gonzalo, 2017):

0

1 11
2 2

2 3 3 0
3 2 2

1 1 1
2 2 2

a

b

c

u u
u u
u u

α

β

 − − 
    
    = −    
        
 
 

 (29)

Converting the quantities uα and uβ from the stationary frame to the synchronous reference frame is achieved 
via the following transformation (Gonzalo, 2017):

( ) ( )
( ) ( )

cos sin
 

sin cos
d

q

u u
u u

α

β

θ θ
θ θ

 −   
=     

    
 (30)

3. Modelling of a Rolling Element Bearing
According to Sawalhi and Randall (2008), describing the dynamic behaviour of a rolling element bearing in a 
model dates back to the work of Lundberg and Palmgren (1947). The core statement of their publication covers the 
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modelling of both radial and axial deflections in the presence of a corresponding load with the help of non-linear 
stiffness coefficients. However, one downside of this approach is the lack of characterising the non-linear nature of 
the bearing.

As stated by Howard (1994), an improvement in the field of dynamic modelling of a rolling element bearing 
(specifically in angular contact ball bearings) has been achieved by the work of Gupta (1975). In the scope of 
this publication, the author formulates and solves the generalised differential equations of motion for the rolling 
element(s) with given initial conditions. Therefore, the motion of the rolling element (ball type) both in transient and 
steady state was described, which furthermore allowed the prediction of the amount of skid between the mating 
surfaces and therefore the rate of wear. An extension of this work, which covers cylindrical roller bearings, can be 
found in a study by Gupta (1979).

A detailed implementation and discussion of localised and distributed defects (such as waviness on the raceway’s 
surface) is shown in the work of Sopanen and Mikkola (2003a,b). The gist of their publication is, among others, that 
a low-order waviness of the raceway’s profile (also termed ‘out-of-roundness’) yields vibrations with frequencies at 
orders of the occurring waviness times the rotational shaft speed, while a waviness in the order of the number of 
rolling elements results in vibration at the bearing defect frequencies.

The characteristic defect frequencies (ball pass frequency of the inner/outer ring) are further explained in 
Section 4.

A more detailed summary of (current) literature on dynamic modelling of rolling element bearings is provided by 
Kumbhar et al. (2021).

The proposed model of a rolling element bearing here is based on the work of Mishra et al. (2017) and Sawalhi 
and Randall (2008), having five degrees of freedom (DOF) in translational motion and one degree of freedom in 
rotational motion. However, the latter one is of minor relevance in the scope of this work.

As illustrated in Figure 8, the bearing’s outer ring is seated in an housing with given stiffness Hk  and damping 
coefficient Hb , which is capable of moving in the x- and y-directions. Separating the outer ring from the inner one and 
allowing the latter one to perform a rotation with low friction is achieved by the rolling elements with a given stiffness 

REk . In addition, the inner ring is attached to the shaft with a tight fit. Consequently, there is no relative rotation 
possible between these mentioned parts (Mishra et al., 2017; Sawalhi and Randall, 2008).

Figure 8. Schematic overview of the five DOF (translational motion) bearing model. Adapted from Mishra et al. (2017) and Sawalhi and Randall 
(2008). DOF, degrees of freedom.
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To derive the equations of motion for the five DOF bearing model, the following assumptions (see [Mishra et al., 
2017; Sawalhi and Randall, 2008]) have to be taken into consideration:

•  The housing, which accommodates the bearing, is kept in a fixed position, meaning it has no DOF (neither 
rotational nor translational motion).

•  The outer ring has two DOF (translational motion) along its x- and y-axes. Therefore, no rotation around any 
axis is allowed.

•  Both the shaft and the inner ring are capable of performing a motion in the x- and y-axes and a rotation 
around the z-axis. Any rotations around the other remaining axes are not possible.

•  The main objective of the cage is to keep the rolling elements separated from each other, with a constant 
angle between each other.

•  Any surfaces that are in contact with each other (inner raceway/rolling elements, outer raceway/rolling 
elements) have to obey the Hertzian contact model.

In the first step, the rotational speed of the cage cω  can be derived with the help of the angular speed of the 
machine’s rotor (Smagala and Kecik, 2019):

Pitch

1
2

s RE
c c

D
D

ωω ϕ
 

= = − 
 

  (31)

In this equation, the quantities PitchD  and RED  represent the pitch diameter (the diameter between the 
centres of the rolling elements) and the diameter of the rolling element (in this case, ball-shaped ones), 
respectively.

Additionally, to obtain the angular position of the cage, the following relationship has to be taken into 
consideration:

Pitch

1
2

s RE
c

D
D

ϕϕ
 

= − 
 

 (32)

Here, the constant sϕ  denotes the angular position of the inner ring (and therefore the shaft).
To obtain each individual angle of the rolling elements (the i-th element), the following equation can be derived 

from the previous ones (Sawalhi and Randall, 2008):

( ) ( )0 slip

Slippage

2 1
0.5 randi c c

RE

i
t

n
ϕ ω ϕ ϕ

π −
= + + + −



 (33)

The quantities 0cϕ  and REn  denote the initial position of the cage and the number of rolling elements in the bearing, 
respectively. To account for the angular deviation, which occurs due to slippage between the mating surfaces inside 
the bearing, the slippage can be modelled as described by Sawalhi and Randall (2008). Typical values for slipϕ  are 
in the range of 0.001–0.002 rad.

Finally, the rotational speed of the individual rolling elements, which can be beneficial for the examination of 
faults in the outer ring, is given by:

( )
2

Pitch
,spin ,spin

Pitch

 1 cos
2
ωϕ ω α

   = = −     


s RE
RE RE

RE

D D
D D  (34)

In this context, the constant α denotes the contact angle between the rolling element and the raceway (Sawalhi 
and Randall, 2008).

3.1.  Equations of motion of the five DOF model
Based on the image of the bearing in Figure 8 and the assumptions mentioned at the beginning of Section 3, the 
following five equations of motion can be formulated (Mishra et al., 2017; Sawalhi and Randall, 2008).
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Equation of motion of the outer ring (in the x-direction):

 H OR H OR H OR xm b x k xx F+ + =   (35)

Equation of motion of the outer ring (in the y-direction):

( ) ( )  H OR H R OR H R OR R R R R y Hm b b y k k y k y b F m gy y+ + + + − − = −    (36)

Equation of motion of the shaft (in the x-direction):

 s s s s s s xm b x k x Fx + + = −   (37)

Equation of motion of the shaft (in the y-direction):

 s s s s s s y sm b y k x m gy F+ + = − −   (38)

Equation of motion of the mass attached to the outer ring (in the y-direction):

( ) ( ) R R R OR R R OR R Rm b y y k y gy y m+ − + + − + = −    (39)

In Eqs (35)–(39), the quantities Hm , Rm  and sm  denote the mass of the bearing’s housing, the attached mass and 
the shaft (including the inner ring), respectively. Additionally, Hb , Rb  and sb  represent the damping coefficient, and Hk ,  

Rk  and Sk  represent the stiffness of the housing, the attached mass and the shaft.
Here, the main objective of attaching a mass to the outer ring is the possibility of simulating the typical response 

of the examined bearing (Sawalhi and Randall, 2008).

3.2. Modelling of the contact forces
The contact forces occurring between the mating forces inside the bearing can be modelled by means of the 
Hertzian contact model, both in the horizontal and vertical directions:

( ) ( )1
cosREn

x RE i i ii
F k Hγδ ϕ δ

=
= −∑  (40)

( ) ( )1
sinREn

y RE i i ii
F k Hγδ ϕ δ

=
= −∑  (41)

In this context, the constant REk  characterises the spring stiffness of the rolling elements. Furthermore, iδ  denotes 
the contact deformation on the mating surfaces caused by the i-th rolling element. When examining bearings with 
a cylindrical-shaped rolling element, the exponent γ  is equal to 10

9
 and 3

2
 for those with ball-shaped ones (Smagala 

and Kecik, 2019).
The computation of the contact deformation in a bearing without a defect is achieved as suggested by Smagala 

and Kecik (2019):

( ) ( ) ( ) ( )cos sin ,i s OR i s OR ix x y y cδ ϕ ϕ= − + − −  (42)

where the clearance inside the bearing is represented by the constant c. The relative translational motion performed 
between the shaft and the outer ring in x- and y-directions is represented by the terms ( )s ORx x−  and ( )s ORy y− , 
respectively.

An important aspect, which has to be taken into consideration, is that the contact forces xF  and yF  can only 
appear in the load zone of the examined bearing (see Figure 9). Consequently, deformations of the mating surfaces 
can only occur in the load zone, i.e. the part of the bearing that is subjected to compressive forces. This fact is 
considered by including the Heaviside function in Eqs (40) and (41) (Mishra et al., 2017):

( )
0  0

 
1  0

x
H x

x
<

=  ≥
 (43)
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Modelling a defective bearing can be achieved, if Eq. (42) is modified in the following manner:

( ) ( ) ( ) ( ) ( )cos sin ,i s OR i s OR i ix x y y c hδ ϕ ϕ ϕ= − + − − −  (44)

where ( )ih ϕ  characterises the height of the spall (this will be discussed more thoroughly in the following subsection).
The additional frictional torque FricT  that is caused by a defect in the bearing (for instance, on the inner/outer ring 

or the rolling element) can be derived from the contact forces NiF  that are perpendicular to the raceway(s). These 
contact forces themselves can be computed from xF  and yF . Therefore, this frictional torque is obtained as follows 
(Meinel, 2020):

Fric
1

 µ
=

= ∑
REn

Ni
i

T r F
 (45)

3.3. Modelling of a fault on the outer ring of a bearing
So far, defective bearings were widely modelled with a simple rectangular spall on either of the raceways, as 
suggested by different publications in this research area. Hence, the rolling element rather ‘falls’ into the spall, rather 
than gradually entering it, as it would be the case in a ‘real’ defective bearing.

Another important aspect that has to be considered is the fact that defects in a bearing are usually small 
compared to that in the rolling element. Therefore, only a fraction of the said rolling element is capable of entering 
the spall, when passing. The procedure of determining the depth ( )h ϕ  of the rolling element entering is discussed 
below.

In the case of a triangular-shaped spall, as depicted in Figure 10, and a void with length s, ( )h ϕ  is given as 
follows:

If    :
2
ϕϕ ϕ ϕ ∆ ≤ ≤ + 

 
def def

( ) ( )
2 2 2

2 4 4
ϕ ϕ ϕ

ϕ

 
= − − − 

∆  

RE RE
def

D D sh  (46)

If ( )   :
2 defdef
ϕ ϕ ϕ ϕϕ ∆  ≤ ≤ + ∆+ 

 

( ) ( )
2 2 2

2 4 4
RE RE

def
D D sh ϕ ϕ ϕ ϕ

ϕ

 
= − − + ∆ − 

∆  
 (47)

In Eqs. (46) and (47), the quantities ϕ, defϕ  and ϕ∆  denote the current angle of the examined rolling element, the 
angle of the occurring defect and the angular dimension of the occurring defect, respectively.

Figure 9. Visualisation of the bearing’s load zone. Adapted from Mishra et al. (2017).
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However, if defects like electrical pitting are considered, where the pits or grooves rather resemble a spall with a 
parabolic shape (as depicted in Figure 11), the following procedure for the computation of ( )h ϕ  has to be considered:

( ) ( ) ( )( )Spall 2 2
2

4
2ϕ ϕ ϕ ϕ ϕ ϕ ϕϕ

ϕ
= − ∆ + + + ∆

∆ def def def

h
h  (48)

One significant aspect, however, that has to be incorporated is the fact that due to the negligible size of real 
spalls compared to the dimension of the rolling element, only a fraction of the rolling element is able to follow the 
contour of the spall. In other words, only a small fraction of this element can enter the void. Therefore, for a given 
spall with the length s and a rolling element with the diameter RED , the maximum depth h (see Figures 10 and 11) 
can be computed as follows:

2 2

 
2 4 4
RE RED D sh = − −  (49)

Figure 11. Illustration on how a rolling element approaches and enters a parabolic spall in the outer ring. The dimensions of the spall are exaggerated 
for better demonstration. Adapted from Floh and Weiss (2023).

Figure 10. Illustration on how a rolling element approaches and enters a triangular spall in the outer ring. The dimensions of the spall are exaggerated 
for better demonstration. Adapted from Floh and Weiss (2023).
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Figure 12. Comparison of the displacement of the outer ring (in y-direction) with rectangular- vs. parabolic-shaped spall on the outer raceway. 
Adapted from Floh and Weiss (2023).

3.4. Modelling of a fault on the inner ring of a bearing
The modelling of one or multiple faults on the inner ring of a bearing is achieved in a similar manner as previously 
shown with spalls on the outer ring. The only aspect that has to be taken into consideration is that the angular 
position of the spall defϕ  is not at a fixed location, since the inner ring performs a rotational motion. In the vast 
majority of applications, the bearing’s outer ring is fixed tightly inside an housing with zero rotational DOF. Hence, 
in this work, the reference frame is based on the stationary outer ring and not the inner one.

Therefore, the angular position of a fault on the inner ring is computed as follows:

,def stϕ ω= −  (50)

where sω  denotes the angular speed of the shaft (and therefore the inner ring) and the variable t denotes the elapsed 
time. The negative sign takes into account that a clockwise rotation of the shaft results in a counter-clockwise 
rotation of the rolling elements around their own axes.

In complete analogy to the previously depicted procedure about the simulation of triangular-shaped spalls 
(as illustrated in Figures 15 and 16) with the length s, the depth of the rolling element entering the void can be 
approximated in the following manner:
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def def
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def

D D sh  (52)

In addition to this, the height ( )h ϕ  of a rolling element entering a parabolic-shaped spall is a function of ϕ and 
can be obtained via Eq. (48).

4. Numerical Results
A closer examination of Figures 12–14 unveils that the shape of the spall on the outer raceway has varying effects 
on the displacement of the outer ring in the y-direction. Therefore, a rectangular spall yields a more distinct influence 
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compared to a parabolic- or triangular-shaped one, primarily due to the unrealistically sharp transitions, as illustrated 
in Figures 12 and 13. A subset of the simulation data is provided in Table 1.

Furthermore, Eq. (45) that incorporates the frictional torque FricT  resulting from a spall in the outer raceway 
was calculated in Eq. (28). Therefore, this leads to a deviation in the rotational speed of the shaft, as 

Figure 13. Comparison of the displacement of the outer ring (in y-direction) with rectangular- vs. triangular-shaped spall on the outer raceway. 
Adapted from Floh and Weiss (2023).

Figure 14. Comparison of the displacement of the outer ring (in y-direction) with triangular- vs. parabolic-shaped spall on the outer raceway. Adapted 
from Floh and Weiss (2023).

Figure 15. Illustration on how a rolling element approaches and enters a triangular spall in the inner ring. The dimensions of the spall are exaggerated 
for better demonstration.
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Figure 16. Illustration on how a rolling element approaches and enters a parabolic spall in the inner ring. The dimensions of the spall are exaggerated 
for better demonstration.

Table 1. Overview of the simulation data.

Quantity Abbreviation Value

Shaft speed Shaftn 300 rpm

Height spall Spallh 0.03715 mm

Width spall s 1 mm

Diameter rolling element RED 6.76 mm

Pitch diameter PitchD 29.74 mm

Stiffness ball REk 1.89 × 1010 N/m

Frictional coefficient µ 0.001

illustrated in Figure 17. In this investigation scenario, the average additional frictional torque is approximately 
0.036 Nm.

An approach for the detection and characterisation of a fault in a bearing involves the analysis of the 
envelope spectrum of the acceleration signal (i.e. in the y-direction), as depicted in Figure 18. As shown in this 
plot, the presence of the first peak and its harmonics suggests a spall in the outer ring, which is backed by the 
evidence in this figure. In this illustration, the dominant peak aligns with the ball pass frequency of the outer 

Figure 17. Visualisation of the shaft speed during the start-up of the motor without an attached load, comparing one with a healthy bearing to that 
with a faulty bearing (parabolic spall). Simulation parameters are given in Table 1. Adapted from Floh and Weiss (2023).
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ring (BPFO), which can be obtained from the geometry of the bearing (see Table 1) and the following equation 
(Howard, 1994):

( )BPFO
Pitch

1 cos
2
RE RE

s
n Df f

D
α

 
= − 

 
 (53)

In complete analogy to Eq. (53), the ball pass frequency of the inner ring (BPFI) is given by the following 
relationship, which is beneficial for the characterisation of the fault shown in Figures 19 and 20 (Howard, 1994):

( )BPFI
Pitch

1 cos
2
RE RE

s
n Df f

D
α

 
= + 

 
 (54)

Figure 18. Envelope spectrum of the vibration signal (outer ring) in the y-direction of a bearing with a parabolic-shaped spall on the outer raceway 
and a shaft speed of 300 rpm. Adapted from Floh and Weiss (2023). BPFO, ball pass frequency of the outer ring.

Figure 19. Envelope spectrum of the vibration signal (outer ring) in the y-direction of a bearing with a parabolic-shaped spall on the inner raceway 
and a shaft speed of 300 rpm. BPFI, ball pass frequency of the inner ring.
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5.  Verification of the Bearing Model
The verification of the proposed bearing model in Section 3 has been accomplished with an experimental setup, 
mainly consisting of a bearing with a known fault, an housing, an electrical machine, an accelerometer and a 
corresponding measurement equipment. The purpose of the latter two is to keep track of the outer ring’s vibration 
signal, which is then compared to the output of the simulation.

In the scope of this section, the following faults have been considered for the verification: a rectangular spall 
on the inner ring (Figure 21), and a parabolic spall each on the outer (Figure 22) and inner ring (Figure 23) of the 
bearing.

Even though the faults shown in Figures 21–23 are synthetically induced, they may resemble real faults, such as 
‘forced fracture’, “false brinelling” or ‘overload deformation’ (plastic deformation), respectively (SKF, 2022).

Figure 20. Envelope spectrum of the vibration signal (outer ring) in the y-direction of a bearing with a parabolic-shaped spall on the inner raceway 
and a shaft speed of 600 rpm. BPFI, ball pass frequency of the inner ring.

Figure 21. Bearing (6203-Z) with a rectangular spall (width s = 1.1 mm) perpendicular to the inner raceway. By utilising a polyamide cage, the 
bearing could be dismantled without damage.
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The housing, which accommodates the examined bearings, is illustrated in Figure 24. In addition to this, an 
accelerometer The Kistler Group has its headquarters in Winterthur, Switzerland and is specialized on measurement 
technology (a KISTLER shear-type accelerometer) is mounted in close proximity to the bearing’s outer ring.

The sensor signal is then recorded by a data acquisition module Hottinger Brüel and Kjaer Measurement 
Technology with its headquarters in Darmstadt, Germany (HBK QuantumX MX410B), which has a sampling rate of 
200 kS/s and a vertical resolution of 24 bits.

Special care has to be taken that the angle of the defect that occurs ( defϕ ) in the experimental setting and the 
alignment of the rolling elements matches with that of the simulation. In addition to this, since the machine used in 
the verification process is an inverter-fed induction machine, the acceleration ramp and the exact rotational speed 
of the shaft also have to coincide with that of the simulation. Otherwise, an obvious shift between the measured and 
simulated data would be obtained.

To begin, the comparison of a bearing with a parabolic-shaped spall on the outer ring (see Figure 22) of the 
proposed simulation model and the experiment yields the results presented in Figure 25. Here, the majority of the 
peaks of the oscillations appear to be approximately in the same order of magnitude. Due to the random nature of 
the slippage (see Eq. [33]), a time shift between the oscillations occurs, which is visible at the beginning and the end 
of the recorded signal as shown in Figure 25.

Figure 22. Bearing (6203-Z) with a fault resembling a parabolic spall (width s = 3.3 mm) on the outer ring.

Figure 23. Bearing (6203-Z) with a fault resembling a parabolic spall (width s = 3.4 mm) on the inner ring.
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Figure 24. The housing of the examined bearings. The top centre of this illustration shows the mounted accelerometer.

Figure 25. Comparison of the simulation and the experimental data of a parabolic spall on the outer raceway. Due to the rotational speed of the shaft 
(520 rpm), the inner ring performs approximately four revolutions in this recording.

The relatively high acceleration values in the experiments are caused due to the accelerometer mounted in 
close proximity to the outer ring and the shaft solely supported by the examined bearing, which therefore carries 
almost the entire weight of the shaft.

The next comparison aims to examine the difference between the simulation and the experiment of the parabolic-
shaped spall on the inner ring (see Figure 23), as demonstrated in Figure 26.

Even though the majority of the oscillations’ amplitudes are in the same order of magnitude, one significant 
difference occurs. Due to the fact that the massless rolling element in the simulation strictly follows the shape 
of the spall, an additional smaller oscillation occurs, whenever the rolling elements exit the spall. This described 
phenomenon is more pronounced, with such great spalls (and therefore great angular dimensions ∆φ).

However, in real bearing applications, the rolling elements may not necessarily follow the shape of the entire 
spall. This assumption is backed by the data shown in Figure 26.

As initially stated in this work, the simulation of rectangular spalls yields unrealistic data, due to the occurrence 
of sharp transitions. Figure 27 supports this prediction, since the amplitudes of the simulation data are three to 
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four times greater than that of the experimental one, which is also true for the oscillations appearing as the rolling 
element exits the spall.

6. Conclusion
To foster the understanding of how different fault types affect the operation of induction machines, with respect to 
an additional frictional torque and vibration, the presented paper aims to introduce a method of simulating different 

Figure 27. Comparison of the simulation and the experimental data of a rectangular spall on the inner raceway. Due to the rotational speed of the 
shaft (510 rpm), the inner ring performs approximately two revolutions in this recording.

Figure 26. Comparison of the simulation and the experimental data of a parabolic spall on the inner raceway. Due to the rotational speed of the shaft 
(510 rpm), the inner ring performs approximately two revolutions in this recording.

559



Simulating Rolling Element Bearing Defects in Induction Machines

shapes of faults in a bearing raceway (both inner and outer ring) and examines their impact on the bearing as well 
as the machine as a whole.

Another benefit of a dynamic model lies in the possibility of obtaining synthetic vibration data, which can be 
utilised to evaluate and improve signal processing methods (both in the time and frequency domains) for detecting 
an (impending) fault in the examined bearing(s).

The first part of this work addresses the dynamic model of the induction machine featuring a squirrel cage rotor 
(with identified parameters from a 0.37 kW machine) that acts as a basis for the Simulink model. Subsequently, 
a bearing model with five DOF (five DOF of translational motion), along with the derived equations of motion as 
presented by Mishra et al. (2017) and Sawalhi and Randall (2008), is added to the Simulink model.

This work furthermore introduces and compares various shapes of faults in both inner and outer raceway. The 
findings demonstrate that sharp transitions associated with the rectangular spall result in significant oscillations of 
the (outer/inner) ring, leading to unrealistic results. In practical scenarios, however, the examined rolling element 
typically enters the spall gradually, rather than abruptly ‘falling’ into the void. Therefore, modelling a spall as triangular 
or parabolic (e.g. when simulating grooves) delivers more realistic outcomes. The additional frictional torque is then 
calculated as a consequence of the contact forces occurring between the rolling elements in the load zone and the 
raceway(s) in both the x- and y-directions. This torque is then utilised as an input of the induction machine model.

The final step covers the verification of the bearing model and the simulation of the proposed parabolic-
shaped spalls in an experiment, which has been conducted with bearings of known fault size and shape. The 
outcome of the experiment shows that the simulation yields satisfying results with both spalls on the inner and 
outer ring.

In contrast, the limit of this simulation model clearly lies in the modelling of spalls with a sharp transition (such 
as rectangular-shaped ones) due to the occurrence of sharp transitions.

The future work on this topic could include an improvement of the machine model, covering non-linearities such 
as iron losses, current displacement or magnetic saturation. When it comes to the bearing model, one possible 
enhancement would be to consider gyroscopic motion of the rolling element in the presence of axial forces.
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