Warianty tytułu
Języki publikacji
Abstrakty
The relationship between the power consumed in the engine and the power take-off shaft of a maize silage harvester is critical to understanding the efficiency and performance of the harvester. The power consumed in the engine directly affects the power available for use on the P.T.O shaft, which is the power source for the suspended silage harvesters. The research aims to predict the power consumption of the P.T.O shaft based on the power consumption of the tractor engine at different operating parameters, which are two applications of the P.T.O shaft (540 and 540E rpm) and two forward speeds (1.8 and 2.5 km/h) using machine learning algorithms. The best results in terms of engine power consumption were achieved in the 540E P.T.O application, and the forward speed was 1.8 km/h. The results also gave a correlation between the power consumed by the engine and the P.T.O shaft of 87%. Regarding prediction algorithms, the Tree algorithm gave the highest prediction accuracy of 98.8%, while the KNN, SVM, and ANN algorithms gave an accuracy of 98.1, 60, and 60%, respectively.
Rocznik
Tom
Strony
1--9
Opis fizyczny
Bibliogr. 33 poz., fig., tab.
Twórcy
- University of Baghdad, College of Agricultural Engineering Sciences, Baghdad, Iraq, mustafa.ahm@coagri.uobaghdad.edu.iq
autor
- Faculty of Mechanical Engineering, Poznań University of Technology, Piotrowo 3, 60-965 Poznań, Poland, lukasz.gierz@put.poznan.pl
autor
- Faculty of Agriculture, Selçuk University, Konya, Turkey, ozbek@selcuk.edu.tr
autor
- Faculty of Agriculture, Selçuk University, Konya, Turkey, hasan.kirilmaz@selcuk.edu.tr
Bibliografia
- 1. Nieuwenhof, P. Modeling of the energy requirements of a non-row sensitive corn header for a pull- type forage harvester (Doctoral dissertation) 2003.
- 2. FAO. Available online: faostat/en/#data/QCL (accessed on 12 January 2024).
- 3. Savoie, P., Tremblay, D., Theriault, R., Wauthy, J.M., Vigneault, C. Forage chopping energy vs. length of cut. Transactions of the ASAE 1989, 32(2): 437–0442. https://doi.org/10.13031/2013.31022
- 4. Roberge, M., Savoie, P., Norris, E.R. Evaluation of a crop processor in a pull-type forage harvester. Transactions of the ASAE 1998, 41(4): 967–972. https://doi.org/10.13031/2013.17254
- 5. Evrenosoğlu, M., Yalçın, H. A study on the operational characteristics of harvesting mechanization systems of corn silage. Journal of Agricultural Machinery Science 2006, 2(1): 65–70.
- 6. Özbek, O., Al-Sammarraie, M.A.J. Determination of operating characteristics of 540 and 540e P.T.O applications in disc type silage machines. Turkish Journal of Agriculture-Food Science and Technology 2020, 8(8): 1692–1696. https://doi.org/10.24925/ turjaf.v8i8.1692-1696.3462
- 7. Çiftçi, O., Çalışır, S. The impact of a centrifugal pump in the fuel consumption of agricultural tractors with different nominal capacities driven with 540 and 540e P.T.O options. Selcuk Journal of Agriculture and Food Sciences 2018, 32(2): 197–205.
- 8. AL-sammarraie, M.A.J., Özbek, O. The effect of knife clearance on the machine performance in disc type silage machines. Selcuk Journal of Agriculture and Food Sciences 2019, 33(2): 74–81. https://doi. org/10.15316/SJAFS.2019.159
- 9. Sümer, S.K., Kocabiyik, H., Say, S.M., Çiçek, G. Comparing of 540 and 540e P.T.O operational characteristics of tractors in field conditions. Journal of Agricultural Sciences 2010, 16.
- 10. Lin, T., Buckmaster, D.R. Evaluation of an optimized engine-fluid power drive system to replace mechanical tractor power take-offs. Transactions of the ASAE 1996, 39(5): 1605–1610. https://doi. org/10.13031/2013.27675
- 11. Emaish, H., Abualnaja, K.M., Kandil, E.E., Abdelsalam, N.R. Evaluation of the performance and gas emissions of a tractor diesel engine using blended fuel diesel and biodiesel to determine the best loading stages. Scientific Reports 2021, 11(1): 9811. https://doi.org/10.1038/s41598-021-89287-0
- 12. Bahnasy, A.F., El-Gwadi, A.A., Morsi, M.E.M. Prediction of tractor fuel consumption and drawbar power using laboratory and field tests. Misr Journal of Agricultural Engineering 2011, 28(1): 19–31. https://dx.doi.org/10.21608/mjae.2011.105368
- 13. Karwasra, N., Kumar, A., Kalra, A., Mukesh, S., Rani, V. Prediction of tractor power take-off performance using artificial neural network. Journal of Krishi Vigyan 2022, 10(2): 251–258. http://dx.doi. org/10.5958/2349-4433.2022.00046.0
- 14. Rahimi-Ajdadi, F., Abbaspour-Gilandeh, Y. Artificial neural network and stepwise multiple range regression methods for prediction of tractor fuel consumption. Measurement 2011, 44(10): 2104–2111. https://doi.org/10.1016/j.measurement.2011.08.006
- 15. Jalilnezhad, H., Abbaspour-Gilandeh, Y., Rasooli-Sharabiani, V., Mardani, A., Hernández-Hernández, J.L., Montero-Valverde, J.A., Hernández-Hernández, M. Use of a convolutional neural network for predicting fuel consumption of an agricultural tractor. Resources 2023, 12(4): 46. https://doi. org/10.3390/resources12040046
- 16. Mohamed, A.A.I., Bahnasy, A.F., Morsi, M.E., El- Gwadi, A.A. Determining tractor performance using tractor mobility number and engine power. Journal of Soil Sciences and Agricultural Engineering 2008, 33(5): 3443–3455. https://dx.doi.org/10.21608/ jssae.2008.203077
- 17. Tucki, K., Orynycz, O., Świć, A., Wasiak, A., Mruk, R., Gola, A. Analysis of the possibility of using neural networks to monitor the technical efficiency of diesel engines during operation. Advances in Science & Technology Research Journal 2023, 17(6). https://doi.org/10.12913/22998624/172003
- 18. Issa, I.I.M., Zhang, Z., El-Kolaly, W., Yang, X., Wang, H. Design, ansys analysis and performance evaluation of potato digger harvester. International Agricultural Engineering Journal 2020, 29(1): 60–73.
- 19. Al-Sammarraie, M.A.J., Kırılmaz, H. Technological advances in soil penetration resistance measurement and prediction algorithms. Reviews in Agricultural Science 2023, 11: 93–105. https:// doi.org/10.7831/ras.11.0_93
- 20. Che, D., Liu, Q., Rasheed, K., Tao, X. Decision tree and ensemble learning algorithms with their applications in bioinformatics. Software tools and algorithms for biological systems 2011: 191–199. https://doi.org/10.1007/978-1-4419-7046-6_19
- 21. Abdulrezzak, S., and Sabir, F. An empirical investigation on snort NIDS versus supervised machine learning classifiers. Journal of Engineering 2023, 29(2): 164–178. https://doi.org/10.31026/j. eng.2023.02.11
- 22. Kuang, Q., Zhao, L. A practical GPU based kNN algorithm. Proceedings. The 2009 International Symposium on Computer Science and Computational Technology (ISCSCI 2009) 2009.
- 23. Hussein, M.A. Performance analysis of different machine learning models for intrusion detection systems. Journal of Engineering 2022, 28(5): 61–91. https://doi.org/10.31026/j.eng.2022.05.05
- 24. Al-Sammarraie, M.A.J., Gierz, Ł., Przybył, K., Koszela, K., Szychta, M., Brzykcy, J., Baranowska, H.M. Predicting fruit’s sweetness using artificial intelligence – case study: orange. Applied Sciences 2022, 12(16): 8233. https://doi.org/10.3390/ app12168233
- 25. Muter, Z.K., Molood, A.T. Design the modified multi practical swarm optimization to enhance fraud detection. Ibn AL-Haitham Journal for Pure and Applied Sciences 2020, 33(2): 156–166.
- 26. Bondar, O. Predictive neural network in multipurpose self-tuning controller. Acta Mechanica Et Automatica 2020, 14(2): 114–120. https://doi. org/10.2478/ama-2020-0017
- 27. Rezouki, S.E. Artificial neural network model for wastewater projects maintenance management plan. Journal of Engineering 2022, 28(11): 14–31. https:// doi.org/10.31026/j.eng.2022.11.02
- 28. Kumar, M.N., Koushik, K.V.S., Deepak, K. Prediction of heart diseases using data mining and machine learning algorithms and tools. International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018, 3: 887–898.
- 29. Dahab, M., Al-Hashem, H.A.E. Study on the effect of tractor power and speed on some field performance parameters working on a clay loam soil. Journal of Soil Sciences and Agricultural Engineering 2002, 27(1): 573–582. https://dx.doi.org10.21608/ jssae.2002.253307
- 30. Rahim, R., Mamat, R., Taib, M.Y., Abdullah, A.A. Influence of fuel temperature on a diesel engine performance operating with biodiesel blended. Journal of Mechanical Engineering and Sciences 2012, 2: 226–236. https://doi.org/10.15282/ jmes.2.2012.10.0021
- 31. Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of clinical epidemiology 1996, 49(11): 1225–1231. https://doi. org/10.1016/S0895-4356(96)00002-9
- 32. Imandoust, S.B., Bolandraftar, M. Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical background. International journal of engineering research and applicaions 2013, 3(5): 605–610.
- 33. Karamizadeh, S., Abdullah, S.M., Halimi, M., Shay- an, J., Javad Rajabi, M. Advantage and drawback of support vector machine functionality. In 2014 international conference on computer, communications, and control technology (I4CT) 2014, 63–65. https:// doi.org/10.1109/I4CT.2014.6914146
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ebd7d871-f887-48cd-93f4-cf6171382779