Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 20, nr 1(63) | 71--81
Tytuł artykułu

Microstructural characterization of ULC steel

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, microstructure of the ULC steel was investigated by using the X-ray diffraction (XRD), optical microscopy (OM) and electron back scattering diffraction (EBSD) analysis. The pure ferrite phase consisting of various crystalline orientations, e.g. (110) and (200) etc., existed in the ULC steel. Ultra-fine grains of ferrite were observed in the ND-TD cross-section (⊥ RD), meanwhile, typical lamina were seen in the ND-RD cross-section (// RD) of the steel sheet. Grain size of the annealed steel was observed to be coarser and equiaxed in all direction. According the EBSD results, intensities of the beneficial texture {111}<001> increased in the annealed steel, but weakened in the cross-section that was parallel to rolling direction. Ratio of low-angle grain boundaries (1°< LAGBs < 15°) in the annealed steel was estimated as the higher value (93.1 %) than that in the cold-rolled steel (69.1 %).
Wydawca

Rocznik
Strony
71--81
Opis fizyczny
Bibliogr. 36 poz., tab., rys.
Twórcy
  • School of Materials Science and Engineering, Hanoi University of Science and Technology No. 1, Dai Co Viet Road, Hai Ba Trung District, Hanoi, Vietnam
autor
  • School of Materials Science and Engineering, Hanoi University of Science and Technology No. 1, Dai Co Viet Road, Hai Ba Trung District, Hanoi, Vietnam
autor
  • School of Materials Science and Engineering, Hanoi University of Science and Technology No. 1, Dai Co Viet Road, Hai Ba Trung District, Hanoi, Vietnam, hoa.buianh@hust.edu.vn
Bibliografia
  • 1. Ali Z., Zhang C.X., Zhu J.C., Jin G., Wang Z.F., Wu Y.Q., Khan M.A., Dai J.G., and Tang Y.J.: The role of nanotechnology in food safety: Current status and future perspective. Journal of Nanoscience and Nano-technology 18 (2018), 7983-8002.
  • 2. Bumbudsanpharoke N., Choi J.W., and Ko S.H.: Applications of nanomaterials in food packaging. Journal of Nanoscience and Nanotechnology 15 (2015), 6357-6372.
  • 3. Nakagawa Y., Tada M., Kojima K., Nakamaru H.: Effect of Nb contents on size of ferrite grains and Nb precipitates in ultra-low carbon steel for cans. ISIJ International 56 (2016), 1262-1267.
  • 4. Liu Z.W., Kang Y.L., Li Y.D.: Influence of continuous annealing soaking temperature on fish-scaling resistance of ultra-low carbon steel for porcelain enameling. Metallurgical Research and Technology 116 (2019), paper no. 205.
  • 5. Ko Y.G., Suharto J., Lee J.S., Park B.H., Shin D.H.: Effect of roll speed ratio on deformation characteris-tics of IF steel subjected to differential speed rolling. Metals and Materials International, 19 (2013), 603-609.
  • 6. Guo A., Misra R.D.K., Xu J., Guo B., and Jansto S.G.: Ultra high strength and low yield ratio of niobium-microalloyed 900 MPa pipeline steel with nano/ultrafine bainitic lath. Materials Science and Engineering A, 527 (2010), 3886-3892.
  • 7. Torres-Islas A., Molina-Ocampo A., Reyes-Hernandez R., Serna S., Acosta-Flores M., Juarez-Islas J.A.: Corrosion, microstructure and mechanical performance of ultra low C/Cr stabilized steel. International Journal of Electrochemistry Science, 10 (2015), 10029-10037.
  • 8. Bui A.H., Le H.: Strength and microstructure of cold-rolled IF steel. Acta Metallurgica Slovaca, 22 (2016), 35-43.
  • 9. Pan Z.Y., Gao B., Lai Q.Q., Chen X.F., Cao Y., Liu M.P., Zhou H.: Microstructure and mechanical prop-erties of a cold-rolled ultrafine-grained dual-phase steel. Materials, 11 (2018), 1399-1409.
  • 10. Guo Y.H., Wang Z.D., Xu J.S., Wang G.D., and Liu X.H.: Texture evolution in a warm-rolled Ti-IF Steel during cold rolling and annealing. Journal of Materials Engineering and Performance, 18 (2009), 378-384.
  • 11. Ono Y., Funakawa Y., Okuda K., Seto K., Ebisawa N., Inoue K., and Nagai Y.: Roles of solute C and grain boundary in strain aging behavior of fine-grained ultra-low carbon steel sheets. ISIJ International, 57 (2017), 1273-1281.
  • 12. Ławrynowicz Z.: Bainite transformation in experimental Fe-Cr-Mo-V-Ti-C steel. Advances in Materials Science, 13 (2013), 13-18.
  • 13. Chen J.P., Kang Y.L., Hao Y.M., Liu G.M., Xiong A.M.: Microstructure and properties of Ti and Ti+Nb ultra-low-carbon bake hardened steels. Journal of Iron and Steel Research International, 16 (2009), 33-40.
  • 14. Shukla R., Ghosh S.K., Chakrabarti D., and Chatterjee S.: Characterisation of microstructure, texture and mechanical properties in ultra-low C Ti-B micro-alloyed steels. Metals and Materials International, 21 (2015), 85-95.
  • 15. Galan J., Samek L., Verleysen P., Verbeken K. and Houbaert Y.: Advanced high strength steels for au-tomotive industry. Revista de Metallurgia, 48 (2012), 118-131.
  • 16. Kestens L.A.I., Pirgazi H.: Texture formation in metal alloys with cubic crystal structures. Materials Science and Technology, 32 (2016), 1303-1315.
  • 17. Ryde L.: Application of EBSD to analysis of microstructures in commercial steels. Materials Science and Technology, 22 (2006), 1297-1306.
  • 18. Matthieu D., Isabelle A., Nicolas S., Jean-Marc O.: Intergranular stress corrosion cracking of friction stir welded nugget on a 2050-T8 aluminum alloy. Advances in Materials Science, 11 (2011), 44-50.
  • 19. Cruz-Gandarilla F., Bolmaro R.E., Mendoza-Leon H.F., Salcedo-Garrido A.M., Cabanas-Moreno J.G.: Study of recovery and first recrystallization kinetics in CGO Fe3%Si steels using misorientation-derived parameters (EBSD). Journal of Microscopy, 275 (2019), 133-148.
  • 20. Mun H.W., Lee S.I., Koo Y.M.: In-situ heating EBSD study of effects of cold reduction ratio on recrys-tallization and grain growth behaviors in 3% Si electrical steels. ISIJ International, 57 (2017), 1241-1245.
  • 21. Martinez-de-Guerenu A., Arizti F., Diaz-Fuentes M., Gutierrez I.: Recovery during annealing in a cold rolled low carbon steel. Part I: Kinetics and microstructure characterization. Acta Materialia, 52 (2004), 3657-3664.
  • 22. Le H., Nguyen C.S., Bui A.H.: Experimental processing of ultra-low carbon steel using vacuum treatment. Acta Metallurgica Slovaca, 24 (2018), 4-12.
  • 23. Song R., Ponge D., Kaspar R., Raabe D.: Grain boundary characterization and grain size measurement in an ultra-grained steel. Zeitschrit fur Metallkunde, 95 (2004), 513-517.
  • 24. Ghosh S., Singh A.K., Mula S.: Effect of critical temperatures on microstructures and mechanical proper-ties of Nb-Ti stabilized IF steel processed by multiaxial forging. Materials and Design, 100 (2016), 47-57.
  • 25. Ungar T., Ott S., Sanders P.G., Borbely A., Weertman J.R.: Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis. Acta Materialia, 46 (1998), 3693-3699.
  • 26. Gautam J., Petrov R., Kestens L., Leunis E.: Surface energy controlled α-γ-α transformation texture and microstructure character study in ULC steels alloyed with Mn and Al. Journal of Materials Science, 43 (2008), 3969-3975.
  • 27. Lim S.M., Wahabi M.E., Desrayaud C., Montheillet F.: Microstructure refinement of an Fe-C alloy with-in the ferretic range via two different strain paths. Materials Science and Engineering A, 460 (2007), 532-541.
  • 28. Azushima A., Kopp R., Korhonen A., Yang D.Y., Micari F., Lahoti G.D., Groche P., Yanagimoto J., Tsuji N., Rosochowski A., Yanagida A.: Severe plastic deformation (SPD) processes for metal. CIRP Annals-Manufacturing Technology, 57 (2008), 716-735.
  • 29. Lee S.H., Saito Y., Park K.T., and Shin D.H.: Microstructures and mechanical properties of ultra low carbon IF steel processed by accumulative roll bonding process, Materials Transactions, 43 (2002), 2320-2325.
  • 30. Xu C., Furukawa M., Horita Z., Langdon T.G.: Severe plastic deformation as a processing tool for devel-oping superplastic metals. Journal of Alloys Compounds, 378 (2004), 27-34.
  • 31. Kvackaj, T., Zemko, M., Kuskulic, T., Kocisko, R., Besterci, M., Dobatkin, S., Molnarova, M.: Nanostructure formation and numerical simulation of IF steel in ECAP. High Temperature Materials and Processes, 26 (2007), 147-150.
  • 32. Wang Q., Zhang S., Zhang C.H., Wu C.L., Wang J.Q., Chen J., Sun Z.L.: Microstructure evolution and EBSD analysis of a grade steel fabricated by laser additive manufacturing. Vacuum, 141 (2017), 68-81.
  • 33. Cizek J., Janecek M., Krajnak T., Straska J., Hruska P., Gubicza J., Kim H.S.: Structural characterization of ultrafine-grained interstitial-free steel prepared by severe plastic deformation. Acta Materialia, 105 (2016), 258-272.
  • 34. Wenk H.R., Huensche I., and Kenstens L.: In-situ observation of texture changes during phase transfor-mations in ultra-low carbon steel. Metallurgical and Materials Transactions A, 38 (2007), 261-267.
  • 35. Wakita M., Suzuki S.: In-situ observation of microstructure change in steel by EBSD. Nippon Steel & Sumitomo Metal Technical Report, 114 (2017), 32-37.
  • 36. Kitahara H., Ueji R., Ueda M., Tsuji N., and Minanimo Y.: Crystallographic analysis of plate martensite in Fe-28.5 at.% Ni by FE-SEM/EBSD. Materials Characterization, 54 (2005), 378-386.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ebc6a2f6-1878-4c05-8a97-fe70688cd42a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.