Warianty tytułu
Języki publikacji
Abstrakty
The dynamics of short intense electromagnetic pulses propagating in a relativistic pair plasma is governed by a nonlinear Schrödinger equation with a new type of focusing-defocusing saturable nonlinearity. In this context, we provide an existence theory for ring-profiled optical vortex solitons. We prove the existence of both saddle point and minimum type solutions. Via a constrained minimization approach, we prove the existence of solutions where the photon number may be prescribed, and we get the nonexistence of small-photon-number solutions.We also use the constrained minimization to compute the soliton’s profile as a function of the photon number and other relevant parameters.
Czasopismo
Rocznik
Tom
Strony
1--12
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA, lmedina@nyu.edu
Bibliografia
- [1] S. K. Adhikari, Localization of a Bose-Einstein condensate vortex in a bichromatic optical lattice, Phys. Rev. A 81 (2010), Article ID 043636.
- [2] A. Bekshaev, M. Soskin and M. Vasnetsov, Paraxial light beams with angular momentum, Ukrainian J. Phys. 2 (2005), 73-113.
- [3] V. I. Berezhiani and S. M. Mahajan, Large amplitude localized structures in a relativistic electron-position ion plasma, Phys. Rev. Lett. 73 (1994), Article ID 1110.
- [4] V. I. Berezhiani, S. M. Mahajan and N. L. Shatashvili, Stable optical vortex solitons in pair plasmas, Phys. Rev. A 81 (2010), Article ID 053812.
- [5] V. I. Berezhiani, N. L. Shatashvili, S. M. Mahajan and B. N. Aleksic, Vortex bubble formation in pair plasmas, Phys. Rev. E 88 (2013), Article ID 015101.
- [6] T. A. Davydova and A. I. Yakimenko, Stable multi-charged localized optical vortices in cubicquintic nonlinear media, J. Optics A 97 (2004), S197-S201.
- [7] A. S. Desyatnikov, Y. S. Kivshar and L. Torner, Optical vortices and vortex solitons, Progr. Optics 47 (2005), 291-391.
- [8] C. Greco, On the cubic and cubic-quintic optical vortices equations, J. Appl. Anal. 22 (2016), no. 2, 95-105.
- [9] Y. Jabri, The Mountain Pass Theorem, Encyclopedia Math. Appl. 95, Cambridge University, Cambridge, 2003.
- [10] Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, San Diego, 2003.
- [11] Y. S. Kivshar and G. I. Stegeman, Spatial optical solitons, Opt. Photon. News 13 (2002), 59-63.
- [12] S. M. Mahajan, N. L. Shatahvili and V. I. Berezhiani, Assymetry-driven structure formation in pair plasmas, Phys. Rev. E. 80 (2009), Article ID 0666404.
- [13] L. Medina, On the existence of optical vortex solitons propagating in saturable nonlinear media, J. Math. Phys. 58 (2017), no. 1, Article ID 011505.
- [14] J. F. Nye and M. V. Berry, Dislocations in wave trains, Proc. Roy. Soc. Lond. Ser. A 336 (1974), 165-190.
- [15] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math. 65, American Mathematical Society, Providence, 1986.
- [16] D. Rozas, C. T. Law, G. A. Swartzlander, Jr., Propagation dynamics of optical vortices, J. Optical Soc. Amer. B 14 (1997), 3054-3065.
- [17] D. Rozas, Z. S. Sacks, G. A. Swartzlander, Jr., Experimental observation of fluid-like motion of optical vortices, Phys. Rev. Lett. 79 (1997), 3399-3402.
- [18] J. R. Salgueiro and Y. S. Kivshar, Switching with vortex beams in nonlinear concentric couplers, Opt. Exp. 20 (2007), 12916-12921.
- [19] J. Scheuer and M. Orenstein, Optical vortices crystals: Spontaneous generation in nonlinear semiconductor microcavities, Science 285 (1999), 230-233.
- [20] M. Segev, Optical spatial solitons, Opt. Quantum Electron. 30 (1998), 503-533.
- [21] D. V. Skryabin and W. J. Firth, Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic nonlinear media, Phys. Rev. E 58 (1998), 3916-3930.
- [22] G. A. Swartzlander, Jr. and C. T. Law, Optical vortex solitons observed in Kerr nonlinear media, Phys. Rev. Lett. 69 (1992), 2503-2506.
- [23] T. Watanabe, Radial solutions with a vortex to an asymptotically linear elliptic equation, NoDEA Nonlinear Differential Equations Appl. 15 (2008), no. 3, 387-411.
- [24] Y. Yang and R. Zhang, Existence of optical vortices, SIAM J. Math. Anal. 46 (2014), no. 1, 484-498.
- [25] MATLAB and Optimization Toolbox Release 2013a, The MathWorks, Inc., Natick, Massachusetts, United States.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ebbeed7c-ca07-4f7f-ad8c-930a33496bc6