Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 36, Fasc. 2 | 353--368
Tytuł artykułu

A functional limit theorem for locally perturbed random walks

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A particle moves randomly over the integer points of the real line. Jumps of the particle outside the membrane (a fixed “locally perturbating set”) are i.i.d., have zero mean and finite variance, whereas jumps of the particle from the membrane have other distributions with finite means which may be different for different points of the membrane; furthermore, these jumps are mutually independent and independent of the jumps outside the membrane. Assuming that the particle cannot jump over the membrane, we prove that the weak scaling limit of the particle position is a skew Brownian motion with parameter γ ϵ 2 [−1, 1]. The path of a skew Brownian motion is obtained by taking each excursion of a reflected Brownian motion, independently of the others, positive with probability 2−1(1 + γ) and negative with probability 2−1(1 - γ). To prove the weak convergence result, we give a new approach which is based on the martingale characterization of a skew Brownian motion. Among others, this enables us to provide the explicit formula for the parameter γ. In the previous articles, the explicit formulae for the parameter have only been obtained under the assumption that outside the membrane the particle performs unit jumps.
Wydawca

Rocznik
Strony
353--368
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Faculty of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv, 4D, Prospekt Hlushkova, Kyiv, Ukraine, iksan@univ.kiev.ua
  • Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivska str. 3, 01601 Kyiv, Ukraine, pilipenko.ay@yandex.ua
Bibliografia
  • [1] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.
  • [2] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge 1989.
  • [3] D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), pp. 1494-1504.
  • [4] A. S. Cherny, A. N. Shiryaev, and M. Yor, Limit behavior of the ‘horizontal-vertical’ random walk and some extensions of the Donsker-Prokhorov invariance principle, Theory Probab. Appl. 47 (2002), pp. 377-394.
  • [5] R. Durrett, Essentials of Stochastic Processes, Springer, New York 1999.
  • [6] K. B. Erickson, The strong law of large numbers when the mean is undefined, Trans. Amer. Math. Soc. 185 (1973), pp. 371-381.
  • [7] J. M. Harrison and L. A. Shepp, On skew Brownian motion, Ann. Probab. 9 (1981), pp. 309-313.
  • [8] A. M. Kulik, A limit theorem for diffusions on graphs with variable configuration, preprint available at arXiv: math/0701632 (2007).
  • [9] A. Lejay, On the constructions of the skew Brownian motion, Probab. Surv. 3 (2006), pp. 413-466.
  • [10] R. A. Minlos and E. A. Zhizhina, Limit diffusion process for a non-homogeneous random walk on a one-dimensional lattice, Russian Math. Surveys 52 (1997), pp. 327-340.
  • [11] D. Paulin and D. Szász, Locally perturbed random walks with unbounded jumps, J. Stat. Phys. 141 (2010), pp. 1116-1130.
  • [12] A. Yu. Pilipenko and Yu. E. Pryhod’ko, Limit behavior of symmetric random walks with a membrane, Theory Probab. Math. Statist. 85 (2012), pp. 93-105.
  • [13] A. Yu. Pilipenko and Yu. E. Prykhodko, Limit behavior of a simple random walk with non-integrable jump from a barrier, Theory Stoch. Process. 19 (35) (2014), pp. 52-61.
  • [14] A. Pilipenko and Yu. Prykhodko, On the limit behavior of a sequence of Markov processes perturbed in a neighborhood of the singular point, Ukrainian Math. J. 67 (2015), pp. 564-583.
  • [15] A. Pilipenko and L. Sakhanenko, On a limit behavior of a one-dimensional random walk with non-integrable impurity, Theory Stoch. Process. 20 (36) (2015), pp. 97-104.
  • [16] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, third edition, Springer, Berlin 1999.
  • [17] D. Szász and A. Telcs, Random walk in an inhomogeneous medium with local impurities, J. Stat. Phys. 26 (1981), pp. 527-537.
  • [18] B. S. Tsirelson, Triple points: from non-Brownian filtrations to harmonic measures, Geom. Funct. Anal. 7 (1997), pp. 1096-1142.
  • [19] D. A. Yarotskii, Invariance principle for nonhomogeneous random walks on the grid Z1, Math. Notes 66 (1999), pp. 372-383.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-eb7a2213-a379-403d-b138-951a26ab922d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.