Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | R. 29, nr 3 | 188--211
Tytuł artykułu

Czy ocena cementowych zapraw klejących do ETICS na podstawie badań przyczepności jest zawsze rzetelna i racjonalna?

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Is the assessment of cementitious adhesive for ETICS based on the adhesion strength tests always reliable and rational?
Języki publikacji
PL EN
Abstrakty
PL
W artykule przedstawiono wyniki porównania międzylaboratoryjnego [Inter Laboratory Comparison – ILC] oznaczenia przyczepności cementowej zaprawy klejącej będącej składnikiem ETICS [ang. External Thermal Insulation Composite System - złożony system izolacji ścian zewnętrznych budynku] do podłoża betonowego oraz materiału termoizolacyjnego – płyty EPS. W ILC, zorganizowanym przez polskie Stowarzyszenie na Rzecz Systemów Ociepleń, uczestniczyło siedemnaście laboratoriów należących do producentów ETICS lub dostawców surowców do produkcji ETICS. Wyznaczone wartości odchylenia standardowego powtarzalności sr w zakresie od 9,73 % do 14,37 % i odchylenia standardowego odtwarzalności sR w zakresie od 22,67 % do 44,36 % oznaczenia przyczepności cementowej zaprawy klejącej do podłoża betonowego oraz wartości odchylenia standardowego powtarzalności sr w zakresie od 8,29 % do 17,50 % i odchylenia standardowego odtwarzalności sR w zakresie od 17,82 % do 30,17 % oznaczenia przyczepności cementowej zaprawy klejącej do płyty EPS w różnych warunkach przechowywania próbki do badań wskazują, że badana metoda charakteryzuje się niską precyzją. Oznacza to, że ocena zgodności wyników badania uzyskanych tą metodą z kryteriami odbiorczymi w wypadku wykonywania pomiarów przez różne laboratoria może być rozbieżna, zaś ryzyko wystąpienia błędnych ocen jest duże.
The article presents the results of an interlaboratory comparison [ILC] of determining the adhesion strength of the cementitious adhesive, which is a component of ETICS to the concrete substrate and the thermal insulation material - EPS board. Seventeen laboratories belonging to external thermal insulation composite system [ETICS] manufacturers or suppliers of raw materials for the production of ETICS participated in the ILC, organized by the Polish Association for ETICS. The determined values of the standard deviation of repeatability sr in the range from 9.7 % to 14.4 % and the standard deviation of reproducibility sR in the range from 22.7 % to 44.36 % of the determination of the adhesion strength of the cementitious adhesive to the concrete substrate and the value of the standard deviation of repeatability sr in the range from 8.3 % to 17.5 % and the standard deviation of reproducibility sR in the range from 17.8 % to 30.2 % of the determination of the adhesion strength of the cementitious adhesive to the EPS board in various storage conditions of the test samples indicate that the tested method is characterized by low precision. It means that the assessment of compliance with the test results obtained by this method with the acceptance criteria when different laboratories perform measurements may be divergent, and the risk of incorrect assessments is high.
Wydawca

Czasopismo
Rocznik
Strony
188--211
Opis fizyczny
Bibliogr. 68 poz., tab.
Twórcy
  • Research and Development Center, Atlas sp. z o.o., Lodz, Poland
Bibliografia
  • 1. Joint Committee for Guides in Metrology, JCGM 200:2012 International vocabulary of metrology – Basic and general concepts and associated terms (VIM) 3rd edition, Sèvres, France. https://doi.org/10.59161/JCGM200-2012 (2012).
  • 2. D. W. Hubbard, How to measure anything: Finding the value of intangibles in business. John Wiley & Sons, Hoboken, NJ, USA, 3rd edtion, ISBN 978-1-118-53927-9.
  • 3. Joint Committee for Guides in Metrology, GUM Newsletter, News from JCGM-WG1 – December 2023. https://www.bipm.org/en/committees/jc/jcgm/wg/jcgm-wg1-gum/newsletters (accessed 09.06.2024).
  • 4. N. Kusnandar, H. Firdaus, I. Supono, B. Utomo, I. Kasiyanto, Q. Lailiyah, Bibliometric review of measurement uncertainty: Research classification and future tendencies. Measurement 232, 114636 (2024). https://doi.org/10.1016/j.measurement.2024.114636
  • 5. H. Huang, Comparison of three approaches for computing measurement uncertainties. Measurement 163, 107923 (2020). https://doi.org/10.1016/j.measurement.2020.107923
  • 6. F. Grégis, On the meaning of measurement uncertainty. Measurement 133, 41-46 (2019). https://doi.org/10.1016/j.measurement.2018.09.073
  • 7. E. Szewczak, Does standardisation ensure a reliable assessment of the performance of construction products? Standards 2(3), 260-275 (2022). https://doi.org/10.3390/standards2030019
  • 8. E. Szewczak, A. Winkler-Skalna, L. Czarnecki, Sustainable test methods for construction materials and elements. Materials 13(3), 606 (2020). https://doi.org/10.3390/ma13030606
  • 9. F. Pennecchi, I. Kuselman, Probabilities of true and false decisions in conformity assessment of a finite sample of items. Meas. Sci. Technol. 35(5), 056003 (2024). https://doi.org/10.1088/1361-6501/ad2439
  • 10. D. Božić, B. Runje, D. Lisjak, D. Kolar, Metrics related to confusion matrix as tools for conformity assessment decisions. Appl. Sci. 13(14), 8187 (2023). https://doi.org/10.3390/app13148187
  • 11. I. Kuselman, F. R. Pennecchi, D. B. Hibbert, A. A. Semenova, A. A. Risks of false decisions on conformity of a sausage with a mass balance constraint. J. Phys. Conf. Series 2192(1), 012021 (2022). https://doi.org/10.1088/1742-6596/2192/1/012021
  • 12. H. Fu, Y. Cheng, Z. Wang, H. Li, X. Chen, J. Lyu, Misjudgement probability estimation of product inspection based on uncertainty. J. Eng. 23, 9097-9100 (2019). https://doi.org/10.1049/joe.2018.9193
  • 13. E. Szewczak, Ryzyko związane z niepewnością wyników badań i oceną zgodności wyrobów budowlanych. Materiały Budowlane 10, 73-75 (2011).
  • 14. W. Hinrichs, The impact of measurement uncertainty on the producer’s and user’s risks, on classification and conformity assessment: an example based on tests on some construction products. Accred. Qual. Assur. 15, 289-296 (2010). https://doi.org/10.1007/s00769-009-0619-3
  • 15. G. B. Rossi, F. Crenna, A probabilistic approach to measurement-based decisions. Measurement 39, 101-119 (2006). https://doi.org/10.1016/j.measurement.2005.10.011
  • 16. N. Milinković, S. Jovičić, S. Ignjatović, Measurement uncertainty as a universal concept: can it be universally applicable in routine laboratory practice? Crit. Rev. Clin. Lab. Sci. 58(2), 101-112 (2021). https://doi.org/10.1080/10408363.2020.1784838
  • 17. K. Shirono, H. Tanaka, M. Koike, Economic optimization of acceptance interval in conformity assessment: 1. Process with no systematic effect. Metrologia 59(4), 045005 (2022). https://doi.org/10.1088/1681-7575/ac6fa1
  • 18. K. Shirono, H. Tanaka, M. Koike, Economic optimization of acceptance interval in conformity assessment: 2. Process with unknown systematic effect. Metrologia 59(4), 045006 (2022). https://doi.org/10.1088/1681-7575/ac6fa2
  • 19. T. Banyai, Economic aspects of decision making in production processes with uncertain component quality. Eng. Econ. 30(1), 4-13 (2019). https://doi.org/10.5755/j01.ee.30.1.19324
  • 20. W. Hinrichs, Product-specific adaption of conformity assessment criteria and their financial consequences. Prod. Eng. 5(5), 549-556 (2011). https://doi.org/10.1007/s11740-011-0329-7
  • 21. J. Michalak, Standards and assessment of construction products: Case study of ceramic tile adhesives. Standards 2(2), 184-193 (2022). https://doi.org/10.3390/standards2020013
  • 22. M. Kulesza, M. Łukasik, B. Michałowski, J. Michalak, Risk related to the assessment and verification of the constancy of performance of construction products. Analysis of the results of the tests of cementitious adhesives for ceramic tiles commissioned by Polish construction supervision authorities in 2016-2020. Cem. Wapno Beton 25(6), 444-456 (2020). https://doi.org/10.32047/CWB.2020.25.6.2
  • 23. M. Łukasik, B. Michałowski, J. Michalak, Assessment of the constancy of performance of cementitious adhesives for ceramic tiles: Analysis of the test results commissioned by Polish market surveillance authorities. Appl. Sci. 10(18), 6561 (2020). https://doi.org/10.3390/app10186561
  • 24. European Committee for Standardization (CEN), EN ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. Brussels, Belgium, (2017).
  • 25. European Committee for Standardization (CEN), EN ISO 10012:2003 Measurement management systems - Requirements for measurement processes and measuring equipment. Brussels, Belgium, (2003).
  • 26. F. de Medeiros Albano, C.S. ten Caten, Analysis of the relationships between proficiency testing, validation of methods and estimation of measurement uncertainty: a qualitative study with experts. Accredit. Qual. Assur. 21, 161-166 (2016). https://doi.org/10.1007/s00769-016-1194-z
  • 27. F. de Medeiros Albano, C.S. ten Caten, Proficiency tests for laboratories: a systematic review. Accredit. Qual. Assur. 19(4), 245-257 (2014). https://doi.org/10.1007/s00769-014-1061-8
  • 28. W. G. Miller, The role of proficiency testing in achieving standardization and harmonization between laboratories. Clin. Biochem. 42(4-5), 232-235 (2009). https://doi.org/10.1016/j.clinbiochem.2008.09.004
  • 29. European Committee for Standardization (CEN). EN ISO/IEC 17011:2017 Conformity assessment – Requirements for accreditation bodies accrediting conformity assessments bodies. Brussels, Belgium, (2017).
  • 30. European Committee for Standardization (CEN). EN ISO/IEC 17043:2010 Conformity assessment – General requirements for proficiency testing. Brussels, Belgium, (2010).
  • 31. H. Huang, A new method for estimating consensus values in interlaboratory comparisons. Metrologia 55(1), 106 (2018). https://doi.org/10.1088/1681-7575/aaa170
  • 32. M. Koch, B. Magnusson, Use of characteristic functions derived from proficiency testing data to evaluate measurement uncertainties. Accredit. Qual. Assur. 17(4), 399-403 (2012). https://doi.org/10.1007/s00769-012-0880-8
  • 33. I. Côté, P. Robouch, B. Robouch, D. Bisson, P. Gamache, A. LeBlanc, P. Dumas, M. Pedneault, Determination of the standard deviation for proficiency assessment from past participant’s performances. Accredit. Qual. Assur. 17(4), 389-393 (2012). https://doi.org/10.1007/s00769-012-0906-2
  • 34. I. R. B. Olivares, G. B. de Souza, A. R. de Araujo Nogueira, V. H. P. Pacces, P. A. Grizotto, P. S. da Silva Gomes Lima, R. M. Bontempi, Trends in the development of proficiency testing for chemical analysis: focus on food and environmental matrices. Accredit. Qual. Assur. 27(2), 55-83 (2022). https://doi.org/10.1007/s00769-021-01487-3
  • 35. C. Stancu, D. Dębski, J. Michalak, Construction products between testing laboratory and market surveillance: Case study of cementitious ceramic tile adhesives. Materials 15(17), 6167 (2022). https://doi.org/10.3390/ma15176167
  • 36. T-D. Jeong, E-J. Cho, K. Lee, W. Lee, Y-M. Yun, S. Chun, J. Song, W-K. Min, Recent trends in creatinine assays in Korea: Long-term accuracy-based proficiency testing survey data by the Korean association of external quality assessment service (2011-2019). Ann. Lab. Med. 41(4), 372-379 (2021). https://doi.org/10.3343/alm.2021.41.4.372
  • 37. C. Stancu, J. Michalak, Interlaboratory comparison as a source of information for the product evaluation process. Case Study of Ceramic Tiles Adhesives. Materials 15(1), 253 (2021). https://doi.org/10.3390/ma15010253
  • 38. J. Michalak, The risk of a different assessment of the performance of cementitious ceramic tile adhesives in the light of the results of interlaboratory comparisons - analysis of the relationship between the participants of the conformity assessment process of construction products. Cem. Wapno Beton 27(6), 372-385 (2022). https://doi.org/10.32047/CWB.2022.27.6.1
  • 39. H. L. Stang, N. L. Anderson, Use of proficiency testing as a tool to improve quality in microbiology laboratories. Clin. Microb. News. 35(18), 145-152 (2013). https://doi.org/10.1016/j.clinmicnews.2013.08.007
  • 40. C. Stancu, D. Dębski, J. Michalak, Assessment of the possibility of using the measurement of open time to assess and verify the constancy of performance of cementitious ceramic tile adhesives. Cem. Wapno Beton 27(4), 246-254 (2022). https://doi.org/10.32047/CWB.2022.27.4.1
  • 41. J. Michalak, R. Ziomek, Assessment of cementitious ceramic tile adhesives in the light of repeatability and reproducibility of the tensile adhesion strength measurements. Materials 16(12), 4245 (2023). https://doi.org/10.3390/ma16124245
  • 42. https://blog.scopus.com/posts/scopus-now-includes-90-million-content-records (accessed 21.06.2024).
  • 43. G. H. Volden, M. Welde, A. Engebø, B. S. Andersen, Do nothing, do minimum or do something? Why public project appraisals “always” recommend large projects, IJMPB 17(3), 430-454 (2024). https://doi.org/10.1108/IJMPB-11-2023-0251
  • 44. K. Samset, G. H. Volden, Front-end definition of projects: Ten paradoxes and some reflections regarding project management and project governance. IJMPB 34(2), 297-313 (2016). https://doi.org/10.1016/j.ijproman.2015.01.014
  • 45. European Commission, Review of the Construction Products Regulation (CPR) – Survey on the Option Paper, April-August 2020 – results. Brussels, Belgium, (2020). https://ec.europa.eu/docsroom/documents/43103 (accessed 23.06.2024).
  • 46. J. Michalak, Environmental Assessment of Construction Products-Challenges, Priorities, and Needs from Producers’ Perspective. A Review. Cem. Wapno Beton 29(1), 16-39 (2024). https://doi.org/10.32047/CWB.2024.29.1.2
  • 47. https://www.pca.gov.pl/akredytacja/badania-bieglosci/dostepne-programy/ (accessed 26.07.2024).
  • 48. European Committee for Standardization (CEN), EN 13163:2012+A1:2015 Thermal insulation products for buildings – Factory made expanded polystyrene (EPS) products - Specification. Brussels, Belgium, (2015).
  • 49. European Organisation for Technical Approvals (EOTA), EAD 040083-00-0404 External Thermal Insulation Composite Systems (ETICS) with Renderings. Brussels, Belgium, (2019).
  • 50. Polski Komitet Normalizacyjny (PKN), PN-ISO 5275-2:2002 Dokładność (poprawność i precyzja) metod pomiarowych i wyników pomiarów - Część 2: Podstawowa metoda określania powtarzalności i odtwarzalności standardowej metody pomiarowej. Warsaw, Poland, (2002).
  • 51. J. Schulze, F. Jodlbauer, K. Adler, Polymer mofyfied mortars for the renovation and rehabilitation of conrete structures. Proceedings of the IXth International Congress on Polymers in Concrete, Bologna, Italy, 15-18 September 1998.
  • 52. J. Michalak, Ceramic tile adhesives from the producer’s perspective: A literature review. Ceramics 4(3), 378-390 (2021). https://doi.org/10.3390/ceramics4030027
  • 53. M. Faatz, A. Ehmann, Influence of the concrete block on the tile adhesive strength measured according to EN 12004. Standards 3(2), 169-176 (2023). https://doi.org/10.3390/standards3020013
  • 54. E. Szewczak, A. Piekarczuk, Performance evaluation of the construction products as a research challenge. Small error-big difference in assessment? Bull. Polish Acad. Sci. Techn. Sci. 64(4), 675-686 (2016). https://doi.org/10.1515/bpasts-2016-0077
  • 55. K. Schabowicz, Non-destructive testing of materials in civil engineering. Materials 12(19), 3237 (2019). https://doi.org/10.3390/ma12193237
  • 56. J. Salustio, S. M. Torres, A. C. Melo, Â. J. C. Silva A. C. Azevedo, J. C. Tavares, M. S. Leal, J. M. Delgado. Mortar bond strength: a brief literature review, tests for analysis, new research needs and initial experiments. Materials 15, 2332 (2022). https://doi.org/10.3390/ma15062332
  • 57. J-H. Lee, B-S. Kim, K-H. Oh, B. Jiang, X. He, B-I. Kim, B-S. Oh, Adhesion strength change analysis based on the application surface area ratio of spot-bonded tiles on vertical walls of high humidity facilities. Appl. Sci. 11(12), 5357 (2021). https://doi.org/10.3390/app11125357
  • 58. J. Souza, A. Silva, J. de Brito, E. Bauer, Application of a graphical method to predict the service life of adhesive ceramic external wall claddings in the city of Brasília, Brazil. J. Build. Eng. 19, 1-13 (2018). https://doi.org/10.1016/j.jobe.2018.04.013
  • 59. P. Liška, B. Nečasová, J. Šlanhof. Influence of technological procedures on mechanical properties of bonded joint. J. Adhes. Sci. 6(1), 1-20 (2018). https://doi.org/10.1186/s40563-018-0114-3
  • 60. T. Lourenço, L. Matias, P. Faria, Anomalies detection in adhesive wall tiling systems by infrared thermography. Constr. Build. Mater. 148, 419-428 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.052
  • 61. A. C. Lopes, I. Flores-Colen, L. Silva, Variability of the pull-off technique for adhesion strength evaluation on ceramic tile claddings. J. Adhes. 91(10-11), 768-791 (2015). https://doi.org/10.1080/00218464.2014.999366
  • 62. N. M. M. Ramos, M. L. Simões, J. M. P. Q. Delgado, V. P. de Freitas, Reliability of the pull-off test for in situ evaluation of adhesion strength. Constr. Build. Mater. 31, 86-93 (2012). https://doi.org/10.1016/j.conbuild-mat.2011.12.097
  • 63. Y. Bai, P. A. M. Basheer, D. J. Cleland, A. E. Long, State-of-the-art applications of the pull-off test in civil engineering. Int. J. Struct. Eng. 1(1), 93-103 (2009). https://doi.org/10.1504/IJStructE.2009.030028
  • 64. S. Stoudt, A. Pintar, A. Possolo, Uncertainty evaluations from small datasets. Metrologia 58(1), 015014 (2021). https://doi.org/ 10.1088/1681-7575/abd372
  • 65. E. Szewczak, A. Bondarzewski, Is the assessment of interlaboratory comparison results for a small number of tests and limited number of participants reliable and rational? Accredit. Qual. Assur. 21, 91-100 (2016). https://doi.org/10.1007/s00769-016-1195-y
  • 66. C. Stancu, The importance of laboratories’ participation in the interlaboratory comparison. Case study: interlaboratory tests on adhesives for ceramic tiles. Rev. Romana Mater. 52(1), 3-7 (2022).
  • 67. C. Stancu, A. Vijan, Ensuring the validity of the results by participating in ILC schemes-Case study: The determination of the water-soluble chromium (VI) content of cement. Standards 2(2), 202-208 (2022). https://doi.org/10.3390/standards2020015
  • 68. J. Mytych, M. Ligarski, Ocena funkcjonowania akredytowanego systemu zarządzania jakością w laboratorium badawczym - wyniki badań ankietowych. Systemy Wspomagania w Inżynierii Produkcji 2(14), 258-269 (2016).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-eb6b6ffc-1a1c-4785-9b2a-6593c5c3d0a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.