Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 55, No. 1 | 17--28
Tytuł artykułu

Efficiency of using GNSS-PPP for digital elevation model (DEM) production

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the developing countries, cost-effective observation techniques are very important for earthwork estimation, map production, geographic information systems, and hydrographic surveying. One of the most cost-effective techniques is Precise Point Positioning (PPP); it is a Global Navigation Satellite Systems (GNSS) positioning technique to compute precise positions using only a single GNSS receiver. This study aims to evaluate the efficiency of using Global Positioning System (GPS) and GPS/ Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) post-processed kinematic PPP solution for digital elevation model (DEM) production, which is used in earthwork estimation. For this purpose, a kinematic trajectory has been observed in New Aswan City in an open sky area using dual-frequency GNSS receivers. The results showed that, in case of using GPS/GLONASS PPP solution to estimate volumes, the error in earthwork volume estimation varies between 0.07% and 0.16% according to gridding level. On the other hand, the error in volume estimation from GPS PPP solution varies between 0.40% and 0.99%.
Słowa kluczowe
Wydawca

Rocznik
Strony
17--28
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Department of Construction and Building Engineering, Arab Academy for Science, Technology and Maritime Transport, Aswan, Egypt, eng.amgad@aast.edu
  • Department of Civil Engineering, Mattraia, Helwan University, Cairo, Egypt
autor
  • Department of Civil Engineering, Mattraia, Helwan University, Cairo, Egypt
Bibliografia
  • Alkan, R. M., Saka, M. H., Ozulu, M. and İlçi, V. (2017) ‘Kinematic precise point positioning using GPS and GLONASS measurements in marine environments’, Measurement: Journal of the International Measurement Confederation, 109, pp. 36-43. doi: 10.1016/j.measurement.2017.05.054.
  • Bangen, S. G., Wheaton, J. M., Bouwes, N., Bouwes, B. and Jordan, C. (2014) ‘A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers’, Geomorphology, 206, pp. 343-361. doi: 10.1016/j.geomorph.2013.10.010.
  • Bolkas, D., Fotopoulos, G., Braun, A. and Tziavos, I. N. (2016) ‘Assessing Digital Elevation Model Uncertainty Using GPS Survey Data’, Journal of Surveying Engineering, 142(3), pp. 1-8. doi: 10.1061/(ASCE)SU.1943-5428.0000169.
  • Cai, C. and Gao, Y. (2013) ‘Modeling and assessment of combined GPS/GLONASS precise point positioning’, GPS Solutions, 17(2), pp. 223-236. doi: 10.1007/s10291-012-0273-9.
  • Farah, A. (2018) ‘Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography‘ Artificial Satellites 53(1): 37-46.
  • Federal Geographic Data Committee (1998) Geospatial Positioning Accuracy Standards Part 3 : National Standard for Spatial Data Accuracy, National Spatial Data Infrastructure. Reston, Virginia. doi: FGDC-STD-007.3-1998.
  • Hofmann-Wellenhof, B., Lichtenegger, H. and Wasle, E. (2008) GNSS - Global Navigation Satellite Systems. 1st edn. Springer-Verlag Wien. doi: 10.1007/978-3-211-73017-1.
  • Meneghini, C. and Parente, C. (2017) ‘Advantages of Multi GNSS Constellation: GDOP Analysis for GPS, GLONASS and Galileo Combinations’, International Journal of Engineering and Technology Innovation; Vol 7, No 1 (2017). Available at: http://ojs.imeti.org/index.php/IJETI/article/view/367.
  • Mukherjee, S., Joshi, P. K., Mukherjee, S., Ghosh, A., Garg, R. D. and Mukhopadhyay, A. (2012) ‘Evaluation of vertical accuracy of open source Digital Elevation Model (DEM)’, International Journal of Applied Earth Observation and Geoinformation. Elsevier B.V., 21(1), pp. 205-217. doi: 10.1016/j.jag.2012.09.004.
  • Patel, A., Katiyar, S. K. and Prasad, V. (2016) ‘Performances evaluation of different open source DEM using Differential Global Positioning System (DGPS)’, Egyptian Journal of Remote Sensing and Space Science. Authority for Remote Sensing and Space Sciences, 19(1), pp. 7-16. doi: 10.1016/j.ejrs.2015.12.004.
  • Peckham, R. and Gyozo, J. (2007) Digital terrain modelling: development and applications in a policy support environment. 1st edn. Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-540-36731-4.
  • Rizos, C., Janssen, V., Roberts, C. and Grinter, T. (2012) ‘Precise Point Positioning: Is the Era of Differential GNSS Positioning Drawing to an End?’, in FIG Working Week 2012, pp. 1-17. Available at: https://eprints.utas.edu.au/13280/.
  • Sanz, J., Rovira-Garcia, A., Hernández-Pajares, M., Juan, M., Ventura-Traveset, J., López-Echazarreta, C. and Hein, G. (2012) ‘The ESA/UPC GNSS-Lab Tool (gLAB): an advanced educational and professional package for GNSS data processing and analysis’, in 6th ESA Workshop on Satellite Navigation Technologies Multi-GNSS Navigation Technologies. Noordwijk, the Netherlands.
  • Teunissen, P. J. G. and Montenbruck, O. (2017) Springer handbook of global navigation satellite systems. 1st edn. Springer International Publishing. doi: 10.1007/978-3-319-42928-1.
  • Zhou, F., Dong, D., Li, W., Jiang, X., Wickert, J. and Schuh, H. (2018) ‘GAMP: An opensource software of multi-GNSS precise point positioning using undifferenced and uncombined observations’, GPS Solutions, 22(2), p. 33. doi: 10.1007/s10291-018-0699-9.
  • Zumberge, J. F., Heftin, M. B., Jefferson, D., Watkins, M. M. and Webb, F. H. (1997) ‘Precise point positioning for the efficient and robust analysis of GPS data from large networks’, Journal of Geophysical Research, 102(10), pp. 5005-5017. doi: 10.1029/96JB03860.
  • Websites:
  • GAPS-PPP (2019): GNSS Analysis and Positioning Software, ©University of New Brunswick, Available at: http://gaps.gge.unb.ca/, Access on 19th July, 2019.
  • APPS-PPP (2019): Automatic Precise Positioning Service, Jet Propulsion Laboratory, California Institute of Technology. Available at: http://apps.gdgps.net/, Access on 19th July, 2019.
  • CSRS-PPP (2019): The Canadian Spatial Reference System (CSRS) Precise Point Positioning (PPP). Available at: https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php, Access on 19th July, 2019.
  • magicGNSS (2019): magicGNSS web service, Available at: https://magicgnss.gmv.com/, Access on 19th July, 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-eb47309b-b7e5-4902-9bcb-dce78b7730c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.