Warianty tytułu
Języki publikacji
Abstrakty
The importance of microfluidics research is growing, especially in the fields of chemistry, biology or medicine. This is coupled with a growing demand for specialized capillary equipment that allows advanced research at the microscale. Conventional methods of manufacturing such devices are expensive, time-consuming and do not guarantee good results. An alternative to these methods is the use of 3D printing technology. Despite the existence of numerous works presenting the possibilities of 3D printing in the context of creating microfluidic devices, there is a lack of comprehensive works presenting qualitative analysis of printed objects. This paper presents a method of producing microcapillary structures for microfluidics research with the help of 3D printing using stereolithography technology. The quality requirements that the printed objects should meet are defined and all stages of production are characterized. A qualitative analysis of the obtained objects was carried out, taking into account both the influence of individual printing parameters and print processing methods. The results of microfluidic tests using printed objects are also presented. This work is aimed at providing specific knowledge that allows the manufacture of precision devices for microfluidics purposes at low cost.
Rocznik
Tom
Strony
289--304
Opis fizyczny
Bibliogr. 22 poz., fig., tab.
Twórcy
autor
- Department of Chemical Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Lodz, Poland, mariola.blaszczyk@p.lodz.pl
autor
- Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology – State Research Institute, Department of Technology and Refrigeration Techniques in Lodz, Al. Marszałka J. Piłsudskiego 84, 92-202 Lodz, Poland, luk.przybysz@o2.pl
autor
- Department of Chemical Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Lodz, Poland, 222879@edu.p.lodz.pl
Bibliografia
- 1. Wu Y.H., Fu J.Z., Gao Q., Qiu J.J. Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis 2016; 28: 1658–1678.
- 2. Bubliauskas W., Kitson A., Francoia P.J., Powell-Davies J.P., Parrilla-Gutierrez H., Manuel J., Frei P., Sebastián M.J., Leroy C. Automatic generation of 3D-printed reactionware for chemical synthesis digitization using ChemSCADHou. ACS Central Science 2021. DOI: 10.1021/acscentsci.0c01354
- 3. Ferguson B.S., Buchsbaum S.F., Wu T.T., Hsieh K., Xiao Y., Sun R., Soh H.T. Genetic Analysis of H1N1 Influenza Virus from Throat Swab Samples in a Microfluidic System for Point-of-Care Diagnostics. Journal of the American Chemical Society 2011; 133(23): 9129–9135.
- 4. Lecault V., White A.K., Singhal A., Hansen C.L. Microfluidic single cell analysis: from promise to practice. Current Opinion in Chemical Biology 2012; 16(3): 381–390.
- 5. Neuži P., Giselbrecht S., Länge K., Huang T.J., Manz A. Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov. 2012; 11(8): 620–632.
- 6. Chin C.D., Linder V., Sia S.K. Commercialization of microfluidic point-of-care diagnostic devices. Lab on a Chip 2012; 12(12): 2118–2134.
- 7. Huh D., Torisawa Y., Hamilton G.A., Kima H.J., Ingber D.E. Microengineered physiological biomimicry: Organs-on-Chips. Lab on a Chip 2012; 12(12): 2156–2164.
- 8. Xiang N., Yi H., Chen K., Wang S., Ni Z. Investigation of the maskless lithography technique for the rapid and cost-effective prototyping of microfluidic devices in laboratories. J. Micromech. Microeng. 2013; 23(2): 025016.
- 9. He Y., Fu J.Z., Chen Z.C. Research on optimization of the hot embossing process. J. Micromech. Microeng. 2007; 17(12): 2420.
- 10. Attia U.M., Marson S., Alcock J.R. Micro-injection moulding of polymer microfluidic devices. Microfluidics and Nanofluidics 2009; 7(1): 1–28.
- 11. Amin R., Knowlton S., Hart A., Yenilmez B., Ghaderinezhad F., Katebifar S., Messina M., Khademhosseini A., Tasoglu S. 3D-printed microfluidic devices - Topical Review. Biofabrication 2016; 8: 022001.
- 12. Pranzo D., Larizza P., Filippini D., Percoco G. Extrusion-Based 3D Printing of Microfluidic Devices for Chemical and Biomedical Applications: A Topical Review. Micromachines 2018; 9: 374; DOI: 10.3390/mi9080374.
- 13. Su R., Wang F., McAlpine M.C. 3D printed microfluidics: advances in strategies, integration, and applications. Lab Chip 2023; 23: 1279.
- 14. Zhang J.M., Ji Q., Duan H. Three-dimensional printed devices in droplet microfluidics. Micromachines 2019; 10: 754. DOI: 10.3390/mi10110754.
- 15. Li F., Macdonald N.P., Guijt R.M., Breadmore M.C. Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing. Lab Chip 2019; 19(1): 35–49. DOI: 10.1039/C8LC00826D.
- 16. Vijayanab S., Hashimoto M. 3D printed fittings and fluidic modules for customizable droplet generators. RSC Adv. 2019; 9: 2822.
- 17. Razavi B.S., Rouhi O., Raoufi M.A., Ejeian F., Asadnia M., Jin D., Ebrahimi W.M., 3D Printing of Inertial Microfluidic Devices. Sci Rep. 2020; 10(1): 5929. DOI: 10.1038/s41598-020-62569-9.
- 18. Filho P., Antonio L., Paixão T.R.L.C., Nordin G.P., Woolley A.T., Leveraging the third dimension in microfluidic devices using 3D printing: no longer just scratching the surface. Anal. Bioanal. Chem. 2024; 416: 2031–2037. DOI:10.1007/s00216-023-04862-w.
- 19. Carnero B., Bao-Varela C., Gómez-Varela A.I., Álvarez E., Flores-Arias M.T., Microfluidic devices manufacturing with a stereolithographic printer for biological applications. Mater Sci Eng C 2021; 129: 112388. DOI: 10.1016/j.msec.2021.112388.
- 20. Li R., Zhang L., Jiang X., Li L., Wu S., Yuan X., Cheng H., Jiang X., Gou M., 3D-printed microneedle arrays for drug delivery. J. Cont. Rel. 2022; 350: 933–948. DOI: 10.1016/j.jconrel.2022.08.022.
- 21. Kim G.B., Lee S., Kim H., Yang D.H., Kim Y.H., Kyung Y.S., Kim C.S., Choi S.H., Kim B.J., Ha H., Kwon S.U., Kim N. Three-Dimensional printing: basic principles and applications in medicine and radiology. Korean Journal of Radiology 2016; 17(2): 182. DOI: 10.3348/kjr.2016.17.2.182.
- 22. Choi J.Y., Choi J.H., Kim N.K., Kim Y., Lee J.K., Kim M.K., Lee J.H., Kim M.J. Analysis of errors in medical rapid prototyping models. International Journal of Oral and Maxillofacial Surgery 2002; 31(1): 23–32. DOI: 10.1054/ijom.2000.0135.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-eb226af2-a122-4086-8df0-57baf0882e98