Czasopismo
2002
|
Vol. 22, Fasc. 1
|
101--113
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
A law of iterated logarithm is established for the maximum likelihood estimator of the unknown parameter of the explosive Gaussian autoregressive process. Outside the Gaussian case, we show that the law of iterated logarithm does not hold, except for a suitable averaging on the maximum likelihood estimator.
Czasopismo
Rocznik
Tom
Strony
101--113
Opis fizyczny
Biblogr. 23 poz.
Twórcy
autor
- Laboratoire de Mathkmatiques, UMR 8628 CNRS, Bâtiment 425, Université Paris-Sud, 91405 Orsay Cedex, France, Bernard.Bercu@ath.u-psud.fr
autor
- Laboratoire de Mathhatiques, UMR 7534 CNRS, Place du Marécha1 Delattre de Tassigny, 75775 Paris Cedex 16, France, abdertouati@yahoo.com
Bibliografia
- [1] T. W. Anderson, On the asymptotic distributions of estimates of parameters of stochastic difference equations, Ann. Math. Statist. 30 (1959), pp. 676-687.
- [2] S. Asmussen and N. Keiding, Martingale central limit theorems and asymptotic theory for multitype branching processes, Adv. in Appl. Probab. 10 (1978), pp. 109-129.
- [3] K. B. Athreya and P. E. Ney, Branching Processes, Springer, Berlin 1972.
- [4] B. Bereu, On large deviations in the Gaussian process: stable, unstable and explosive cases, Bernoulli 7 (2001), pp. 299-316.
- [5] B. M. Brown and C. C. Hey de, An invariance principle and some convergence rates for branching processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete 20 (1971), pp. 271-278.
- [6] M. Duflo, Random Iterative Models, Springer, Berlin 1997.
- [7] M. Duflo, R. Senoussi and A. Touati, Sur la loi des grands nombres pour les martingales vectorielles et l’estimateur des moindres carrés ďun modèle de régression, Ann. Inst. H. Poincaré 26 (1990), pp. 549-566.
- [8] M. Duflo, R. Senoussi and A. Touati, Propriétés asymptotiques presque süres de Vestimateur des moindres carrés d‘un modèle autorégressif vectoriel, Ann. Inst. H. Poincare 27 (1990), pp. 1-25.
- [9] P. Hartman, Normal distributions and the law of iterated logarithm, Amer. J. Math. 63 (1941), pp. 584-588.
- [10] P. Hartman and A. Winter, On the law of iterated logarithm, Amer. J. Math, 63 (1941), pp. 169-176.
- [11] C. C. Hey de, Some almost sure convergence theorems for branching processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete 20 (1971), pp. 189-192.
- [12] C. C. Hey de and J. R. Leslie, Improved classical limit analogues for Galton-Watson processes with or without immigration, Bull. Austral. Math. Soc. 5 (1971), pp. 145-155.
- [13] R. M. Huggins, Laws of iterated logarithm for time changed Brownian motion with an application to branching processes, Ann. Probab. 13 (1985), pp. 1148-1156.
- [14] T. L. Lai and C. Z. Wei, Asymptotic properties of general autoregressive models and strong consistency of least-squares estimates of their parameter J. Multivariate Anal. 13 (1983), pp. 1-23.
- [15] J. Marcinkiewicz and A. Zygmund, Remarque sur la loi du logarithme itéré, Fund. Math. 29 (1937), pp. 215-222.
- [16] V. V. Petrov, Limit Theorems of Probability Theory, Oxford University Press, Oxford 1995.
- [17] M. M. Rao, Consistency and limit distribution of estimators of parameters in explosive stochastic difference equations, Ann. Math. Statist. 32 (1961), pp. 195-218.
- [18] W. F. Stout, Almost sure convergencef Academic Press, New York 1974.
- [19] R. J. Tomkins, Some iterated logarithm results related to the central limit theorem, Trans. Amer. Math. Soc. 156 (1971), pp. 185-192.
- [20] A. Touati, Two theorems on convergence in distribution for stochastic integrals and statistical applications, Probab. Theory Appl. 38 (1993), pp. 95-117.
- [21] A. Touati, Vitesse de convergence en loi de l’estimateur des moindres carrés ďun modèle autoregressif (cas mixte), Ann. Inst. H. Poincaré 32 (1996), pp. 211-230.
- [22] J. S. White, The limit distribution of the serial correlation in the explosive case, Ann. Math. Statist. 29 (1958), pp. 1188-1197.
- [23] R. Wittmann, A general law of iterated logarithm, Z. Wahrscheinlichkeitstheorie verw. Gebiete 68 (1985), pp. 521-543.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-eb07a2d2-02e4-4dce-bfc2-69fcffa3245e