Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Vol. 72, no. 1 | 233--245
Tytuł artykułu

Adaptive trans-dimensional inversion of multimode dispersion curve based on slime mold algorithm

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the rise of low-cost and high-density observation system Distributed Acoustic Sensing (DAS), the effective utilization of high-mode surface wave becomes extremely important due to unique measuring method of DAS. To solve the interference of mode identification of dispersion curve and model dimension division on inversion results, we introduced the fitting degree of the dispersion curve, the model dimension, and the uncertainty estimation of the picked dispersion curve to construct a new objective function, and developed a strategy of adaptive trans-dimensional inversion of multimode dispersion curve based on slime mold algorithm (SMA). The research results show that our objective function can not only satisfy the fitting degree of dispersion curve, but also adaptively select the best model dimension, and does not depend on the mode identification of dispersion curve. Inversion strategy based on SMA algorithm has high flexibility, accuracy, stability, and practicality. Our method develops a new technology for dispersion curve inversion and provides a new idea for DAS system to realize low-cost and high-resolution city underground structure detection.
Wydawca

Czasopismo
Rocznik
Strony
233--245
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
autor
  • College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
autor
  • College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China, fengxuan@jlu.edu.cn
autor
  • College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
autor
  • College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
autor
  • College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
autor
  • College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China, wangtaihan@jlu.edu.cn
Bibliografia
  • 1. Arai H, Tokimatsu K (2005) S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum. Bull Seismol Soc Am 95(5):1766-1778
  • 2. Becker M, Ciervo C, Cole M, Coleman T, Mondanos M (2017) Fracture hydromechanical response measured by fiber optic distributed acoustic sensing at milliHertz frequencies. Geophys Res Lett 44(14):7295-7302
  • 3. Bodin T, Sambridge M, Tkalčić H, Arroucau P, Gallagher K, Rawlinson N (2012) Transdimensional inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research: Solid Earth 117(B2)
  • 4. Cheng F, Xia J, Zhang K, Zhou C, Ajo-Franklin JB (2021) Phase-weighted slant stacking for surface wave dispersion measurement. Geophys J Int 226(1):256-269
  • 5. Cox BR, Teague DP (2016) Layering ratios: a systematic approach to the inversion of surface wave data in the absence of a priori information. Geophys J Int 207(1):422-438
  • 6. Dal Moro G, Pipan M, Gabrielli P (2007) Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation. J Appl Geophys 61(1):39-55
  • 7. Dal Moro G, Moura RMM, Moustafa SS (2015) Multi-component joint analysis of surface waves. J Appl Geophys 119:128-138
  • 8. Daley T, Miller D, Dodds K, Cook P, Freifeld B (2016) Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle. Ala Geophys Prospect 64(5):1318-1334
  • 9. Dettmer J, Dosso SE, Holland CW (2009) Model selection and Bayesian inference for high-resolution seabed reflection inversion. J Acoust Soc Am 125(2):706-716
  • 10. Di Giulio G, Savvaidis A, Ohrnberger M, Wathelet M, Cornou C, Knapmeyer-Endrun B, Renalier F, Theodoulidis N, Bard P-Y (2012) Exploring the model space and ranking a best class of models in surface-wave dispersion inversion: Application at European strong-motion sites. Geophysics 77(3):B147-B166
  • 11. Dong H, Dosso SE (2011) Bayesian inversion of interface-wave dispersion for seabed shear-wave speed profiles. IEEE J Oceanic Eng 36(1):1-11
  • 12. Dou S, Lindsey N, Wagner AM, Daley TM, Freifeld B, Robertson M, Peterson J, Ulrich C, Martin ER, Ajo-Franklin JB (2017) Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study. Sci Rep 7(1):1-12
  • 13. Foti S, Hollender F, Garofalo F, Albarello D, Asten M, Bard P-Y, Comina C, Cornou C, Cox B, Di Giulio G (2018) Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bull Earthq Eng 16(6):2367-2420
  • 14. Foti S, Lancellotta R, Sambuelli L, Socco LV (2000) Notes on fk analysis of surface waves. Annals of Geophysics 43(6)
  • 15. Garofalo F, Foti S, Hollender F, Bard P, Cornou C, Cox BR, Ohrn-berger M, Sicilia D, Asten M, Di Giulio G (2016) InterPACIFIC project: comparison of invasive and non-invasive methods for seismic site characterization. part I: intra-comparison of surface wave methods. Soil Dyn Earthq Eng 82:222-240
  • 16. Gazetas G (1982) Vibrational characteristics of soil deposits with variable wave velocity. Int J Numer Anal Meth Geomech 6(1):1-20
  • 17. Hu S, Luo S, Yao H (2020) The frequency-Bessel spectrograms of multicomponent cross-correlation functions from seismic ambient noise. J Geophys Res Solid Earth 125(8):e2020JB019630
  • 18. Iglesias A, Cruz-Atienza V, Shapiro N, Singh S, Pacheco J (2001) Crustal structure of south-central Mexico estimated from the inversion of surface-wave dispersion curves using genetic and simulated annealing algorithms. Geofís Int 40(3):181-190
  • 19. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773-795
  • 20. Lei Y, Shen H, Li X, Wang X, Li Q (2019) Inversion of Rayleigh wave dispersion curves via adaptive GA and nested DLS. Geophys J Int 218(1):547-559
  • 21. Li C, Dosso SE, Dong H, Yu D, Liu L (2012) Bayesian inversion of multimode interface-wave dispersion from ambient noise. IEEE J Oceanic Eng 37(3):407-416
  • 22. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300-323
  • 23. Luo Y, Xia J, Miller RD, Xu Y, Liu J, Liu Q (2009) Rayleigh-wave mode separation by high-resolution linear Radon transform. Geophys J Int 179(1):254-264
  • 24. Luo B, Trainor-Guitton W, Bozdag E, Laflame L, Cole S, Karrenbach M (2020) Horizontally orthogonal distributed acoustic sensing array for earthquake- and ambient-noise-based multichannel analysis of surface waves. Geophys J Int 222(3):2147-2161
  • 25. Malinverno A (2002) Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. Geophys J Int 151(3):675-688
  • 26. Maraschini M, Foti S (2010) A Monte Carlo multimodal inversion of surface waves. Geophys J Int 182(3):1557-1566
  • 27. Maraschini M, Ernst F, Foti S, Socco LV (2010) A new misfit function for multimodal inversion of surface waves. Geophysics 75(4):G31-G43
  • 28. Martínez M Lana X Olarte J Badal J Canas J (2000) Inversion of Rayleigh wave phase and group velocities by simulated annealing. Phys Earth Planet Inter 122(1-2):3-17
  • 29. Meier RW, Rix GJ (1993) An initial study of surface wave inversion using artificial neural networks. Geotech Test J 16(4):425-431
  • 30. Pan W, Qu L, Innanen KA, Dettmer J, Macquet M, Lawton D, Wang Y (2023) Imaging near-surface S-wave velocity and attenuation models by full-waveform inversion with distributed acoustic sensing-recorded surface waves. Geophysics 88(1):R65-R78
  • 31. Qu L, Dettmer J, Innanen KA, Hall K, Macquet M, Lawton D (2021) Transdimensional multimode surface-wave dispersion inversion of seismic data recorded on trench-deployed distributed acoustic sensing fiber. First International Meeting for Applied Geoscience and Energy Expanded Abstracts pp 607-611
  • 32. Sambridge M (1999a) Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys J Int 138(2):479-494
  • 33. Sambridge M (1999b) Geophysical inversion with a neighbourhood algorithm—II. Apprais Ensemble Geophys J Int 138(3):727-746
  • 34. Sambridge M (2014) A parallel tempering algorithm for probabilistic sampling and multimodal optimization. Geophys J Int 196(1):357-374
  • 35. Schultz R, Gu YJ (2012) Flexible, inversion-based Matlab implementation of the Radon transform. Comput Geosci 52:437-442
  • 36. Schwarz G (1978) Estimating the dimension of a model. The Annals of Statistics pp 461-464
  • 37. Socco LV, Foti S, Boiero D (2010) Surface-wave analysis for building near-surface velocity models—Established approaches and new perspectives. Geophysics 75(5):75A83-75A102
  • 38. Vantassel JP, Cox BR (2022) SWprocess: a workflow for developing robust estimates of surface wave dispersion uncertainty. Journal of Seismology pp 1-26
  • 39. Vantassel JP, Cox BR (2021a) A procedure for developing uncertainty-consistent vs profiles from inversion of surface wave dispersion data. Soil Dyn Earthq Eng 145:106622
  • 40. Vantassel JP, Cox BR (2021b) SWinvert: a workflow for performing rigorous 1-D surface wave inversions. Geophys J Int 224(2):1141-1156
  • 41. Vantassel JP, Cox BR, Hubbard PG, Yust M (2022) Extracting Highresolution, multi-mode surface wave dispersion data from distributed acoustic sensing measurements using the multichannel analysis of surface waves. arXiv preprint arXiv:2202.04779.
  • 42. Wang X, Shen H, Li X, Li Q, Wang D (2021) Rayleigh wave dispersion curve inversion with the artificial bee colony algorithm. J Environ Eng Geophys 26(2):99-110
  • 43. Wathelet M (2008) An improved neighborhood algorithm: parameter conditions and dynamic scaling. Geophysical Research Letters 35(9).
  • 44. Xia J, Miller RD, Park CB (1999) Estimation of near-surface shearwave velocity by inversion of Rayleigh waves. Geophysics 64(3):691-700
  • 45. Yamanaka H, Ishida H (1996) Application of genetic algorithms to an inversion of surface-wave dispersion data. Bull Seismol Soc Am 86(2):436-444
  • 46. Yan Y, Chen X, Huai N, Guan J (2022) Modern inversion workflow of the multimodal surface wave dispersion curves: staging strategy and pattern search with embedded Kuhn-Munkres algorithm. Geophys J Int 231(1):47-71
  • 47. Yoshizawa K, Kennett B (2002) Non-linear waveform inversion for surface waves with a neighbourhood algorithm—application to multimode dispersion measurements. Geophys J Int 149(1):118-133
  • 48. Zeng X, Lancelle C, Thurber C, Fratta D, Wang H, Lord N, Chalari A, Clarke A (2017) Properties of noise cross-correlation functions obtained from a distributed acoustic sensing array at Garner Valley, California. Bull Seismol Soc Am 107(2):603-610
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-eae3dd04-87cc-4958-806c-7ce47221137a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.