Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 3 | 855--876
Tytuł artykułu

Assessment of land surface temperature dynamics over the Bharathapuzha River Basin, India

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Anthropogenic interventions have altered the natural environment and afected many of its physical, chemical, and biological characteristics. Changes in land use-land cover (LULC) are one of the main drivers that alter the hydrologic cycle and cause signifcant impacts on local, regional, and even the global climate system. It is now widely recognised and accepted that climate change is one of the gravest problems that our planet Earth is facing at present. This study analyses the impact of LULC dynamics on the spatial and temporal variation of land surface temperature (LST) in an inter-state river basin, which also happens to be the largest river basin in the state of Kerala, India, viz. the Bharathapuzha river basin, during the period 1990–2017. LST time-series analysis (derived from Landsat) revealed that 98% of the river basin experienced LST less than 298 K in January 1990. Over time, along with changes in LULC, LST also increased; in 2017, about 7.82% of the river basin experienced LST greater than 312 K. A notable change in LULC that occurred during this period was the drastic increase in areas with high albedo. The seasonal curves of LST derived from MODIS data are strong evidence of the devastating impacts of change in LULC on LST and, in turn, on climate change. The major spatial and temporal components of change in LST in the study region were identifed by principal component analysis (PCA). The results of this spatiotemporal analysis spread over a period of 28 years can be used for formulating sustainable development policies and mitigation strategies against extreme climatic events in the river basin.
Wydawca

Czasopismo
Rocznik
Strony
855--876
Opis fizyczny
Bibliogr. 89 poz.
Twórcy
autor
  • Department of Civil Engineering, National Institute of Technology Calicut, Kattangal, Kerala, India, jisha.john45@gmail.com
  • Department of Civil Engineering, National Institute of Technology Calicut, Kattangal, Kerala, India, chithranr@nitc.ac.in
  • Department of Civil Engineering, National Institute of Technology Calicut, Kattangal, Kerala, India, santosh@nitc.ac.in
Bibliografia
  • 1. Abubakar AJ, Hashim M, Pour AB (2018) Identification of hydrothermal alteration minerals associated with geothermal system using ASTER and Hyperion satellite data: a case study from Yankari Park, NE Nigeria. Geocarto International:1–29
  • 2. Allen M, Robertson A (1996) Distinguishing modulated oscillations from coloured noise in multivariate datasets. Clim Dyn 12(11):775–784
  • 3. Anerao D, Jangam S, Thakur P, Tryambake D (2018) Forest fire detection with Satellite images for fire control. J Image Process Artif Intell 4 (2)
  • 4. Baltsavias M, Gruen A, van Gool L, Pateraki M (2005) Recording, modeling and visualization of cultural heritage. In: Proceedings of the International Workshop, Centro Stefano Franscini, Monte Verita, Ascona, Switzerland, May 22–27, 2005. CRC Press, Boca Raton
  • 5. Bayramov E, Knee K, Kada M, Buchroithner M (2018) Using multiple satellite observations to quantitatively assess and model oil pollution and predict risks and consequences to shoreline from oil platforms in the Caspian Sea. Human Ecol Risk Assessment Int J, pp 1–14
  • 6. Bernstein R (1982) Sea surface temperature estimation using the NOAA 6 satellite advanced very high resolution radiometer. J Geophys Res Oceans 87(C12):9455–9465
  • 7. Bloomfield P (2004) Fourier analysis of time series: an introduction. Wiley, New York
  • 8. Bokaie M, Shamsipour A, Khatibi P, Hosseini A (2019) Seasonal monitoring of urban heat island using multi-temporal Landsat and MODIS images in Tehran. Int J Urban Sci 23(2):269–285. https://doi.org/10.1080/12265934.2018.1548942
  • 9. Bridges EM (1998) World reference base for soil resources: atlas, vol 2. Acco,
  • 10. Campbell J, Shin M (2018) Geographic information system basics.
  • 11. Chan D, Wu Q (2015) Significant anthropogenic-induced changes of climate classes since 1950. Sci Rep 5:13487
  • 12. Chandler R, Scott M (2011) Statistical methods for trend detection and analysis in the environmental sciences. Wiley, New York
  • 13. Chandra S, Sharma D, Dubey SK (2018) Linkage of urban expansion and land surface temperature using geospatial techniques for Jaipur City. India Arab J Geosci 11(2):31
  • 14. Chang NB, Bai K (2018) Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing. CRC Press, Boca Raton
  • 15. Chen X-L, Zhao H-M, Li P-X, Yin Z-Y (2006) Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ 104(2):133–146
  • 16. Choudhury D, Das K, Das A (2019) Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur Development Region. Egyptian J Remote Sensing Space Sci 22(2):203–218
  • 17. Chung Y-S, Le H (1984) Detection of forest-fire smoke plumes by satellite imagery. Atmos Environ 18(10):2143–2151
  • 18. Church JA, White NJ (2006) A 20th century acceleration in global sea‐level rise. Geophys Res Lett 33 (1)
  • 19. Costa PM (2017) The Handbook of histopathological practices in aquatic environments: guide to histology for environmental toxicology. Academic Press, New York
  • 20. de Faria PL, de Lucena AJ, Rotunno Filho OC, de Almeida França JR (2018) The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data. Int J Appl Earth Obs Geoinf 64:104–116
  • 21. Dembélé A, Ye X, Touré A (2018) Analysis of land surface temperature change based on MODIS data, case study: Inner Delta of Niger. Natural Hazards and Earth System Sciences Discussions:1–20
  • 22. Deng X, Güneralp B, Su H (2014) Systematic modeling of land use impacts on surface climate. In: Land use impacts on climate. Springer, Heidelberg, pp 1–17
  • 23. Dhar RB, Chakraborty S, Chattopadhyay R, Sikdar PK (2019) Impact of land-use/land-cover change on land surface temperature using satellite data: a case study of Rajarhat Block, North 24-Parganas District, West Bengal. J Indian Soc Remote Sens 47(2):331–348
  • 24. Dutta D, Rahman A, Paul S, Kundu A (2019) Changing pattern of urban landscape and its effect on land surface temperature in and around Delhi. Environ Monit Assess 191(9):551
  • 25. Eastman J, Sangermano F, Ghimire B, Zhu H, Chen H, Neeti N, Cai Y, Machado EA, Crema SC (2009) Seasonal trend analysis of image time series. Int J Remote Sens 30(10):2721–2726
  • 26. George J, Athira P (2020) Long-term changes in climatic variables over the Bharathapuzha river basin, Kerala, India. Theor Appl Climatol, pp 1–18
  • 27. Ghobadi Y, Pradhan B, Shafri HZM, Kabiri K (2015) Assessment of spatial relationship between land surface temperature and landuse/cover retrieval from multi-temporal remote sensing data in South Karkheh Sub-basin. Iran Arab J Geosci 8(1):525–537
  • Article Google Scholar
  • 28. Gohain KJ, Mohammad P, Goswami A (2020) Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. Quaternary International
  • 29. Guhathakurta P, Sudeepkumar B, Menon P, Prasad AK, Sable S, Advani S (2020) Observed Rainfall Variability and Changes over Kerala State. India Meteorological Department, Pune
  • 30. Hansen G, Stone D (2016) Assessing the observed impact of anthropogenic climate change. Nat Clim Chang 6(5):532
  • 31. Helsel DR, Hirsch RM (1992) Statistical methods in water resources, vol 49. Elsevier, Amsterdam
  • 32. Imhoff ML, Zhang P, Wolfe RE, Bounoua L (2010) Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens Environ 114(3):504–513
  • 33. Irish RR (2000) Landsat 7 science data users handbook. National Aeronautics and Space Administration, Report 2000:415–430
  • 34. John J, Chithra N, Thampi S (2019) Prediction of land use/cover change in the Bharathapuzha river basin, India using geospatial techniques. Environ Monit Assess 191(6):354–354
  • 35. Kafy A-A, Shuvo RM, Naim MNH, Sikdar MS, Chowdhury RR, Islam MA, Sarker MHS, Khan MHH, Kona MA (2021) Remote sensing approach to simulate the land use/land cover and seasonal land surface temperature change using machine learning algorithms in a fastest-growing megacity of Bangladesh. Remote Sens Appl Soc Environ 21:100463
  • 36. Karimuzzaman M, Moyazzem Hossain M (2020) Forecasting performance of nonlinear time-series models: an application to weather variable. Model Earth Syst Environ 6(4):2451–2463. https://doi.org/10.1007/s40808-020-00826-6
  • 37. Khandelwal S, Goyal R, Kaul N, Mathew A (2018) Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. Egyptian J Remote Sens Space Sci 21(1):87–94
  • 38. Kong J (2014) International Conference on Remote Sensing and Wireless Communications (RSWC 2014). DEStech Publications, Inc,
  • 39. Krishnan R, Sanjay J, Gnanaseelan C, Mujumdar M, Kulkarni A, Chakraborty S (2020) Assessment of Climate Change over the Indian Region: A Report of the Ministry of Earth Sciences (MoES). Government of India, Springer Nature
  • 40. Kuang W, Liu Y, Dou Y, Chi W, Chen G, Gao C, Yang T, Liu J, Zhang R (2015) What are hot and what are not in an urban landscape: quantifying and explaining the land surface temperature pattern in Beijing. China Landscape Ecol 30(2):357–373
  • 41. Liang S (2005) Quantitative remote sensing of land surfaces, vol 30. Wiley, New York
  • 42. Lillesand TM, Kiefer RW (1994) Remote sensing and photo interpretation. Wiley, New York, p 750
  • 43. Liu G, Zhang Q, Li G, Doronzo DM (2016) Response of land cover types to land surface temperature derived from Landsat-5 TM in Nanjing Metropolitan Region. China Environ Earth Sci 75(20):1386
  • 44. Llewellyn-Jones D, Minnett P, Saunders R, Zavody A (1984) Satellite multichannel infrared measurements of sea surface temperature of the NE Atlantic Ocean using AVHRR/2. Q J R Meteorol Soc 110(465):613–631
  • 45. Majkowska A, Kolendowicz L, Półrolniczak M, Hauke J, Czernecki B (2017) The urban heat island in the city of Poznań as derived from Landsat 5 TM. Theoret Appl Climatol 128(3–4):769–783
  • 46. Mallick J, Kant Y, Bharath B (2008) Estimation of land surface temperature over Delhi using Landsat-7 ETM+. J Ind Geophys Union 12(3):131–140
  • 47. Michener WK, Blood ER, Bildstein KL, Brinson MM, Gardner LR (1997) Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecol Appl 7(3):770–801
  • 48. Mirchooli F, Sadeghi SH, Darvishan AK (2020) Analyzing spatial variations of relationships between Land Surface Temperature and some remotely sensed indices in different land uses. Remote Sensing Applications: Society and Environment:100359
  • 49. Mishra V, Aaadhar S, Shah H, Kumar R, Pattanaik DR, Tiwari AD (2018) The Kerala flood of 2018: combined impact of extreme rainfall and reservoir storage. Hydrology and Earth System Sciences Discussions:1–13
  • 50. Montaner-Fernández D, Morales-Salinas L, Rodriguez JS, Cárdenas-Jirón L, Huete A, Fuentes-Jaque G, Pérez-Martínez W, Cabezas J (2020) Spatio-Temporal variation of the urban heat island in Santiago, Chile during summers 2005–2017. Remote Sensing 12(20):3345
  • 51. Moon T, Joughin I (2008) Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007. J Geophys Res Earth Surface 113 (F2)
  • 52. Moutinho L, Hutcheson GD (2011) The SAGE dictionary of quantitative management research. Sage Publications
  • 53. Mukherjee F, Singh D (2020) Assessing Land Use–Land Cover Change and Its Impact on Land Surface Temperature Using LANDSAT Data: A Comparison of Two Urban Areas in India. Earth Systems and Environment:1–23
  • 54. Nakicenovic N, Alcamo J, Grubler A, Riahi K, Roehrl R, Rogner H-H, Victor N (2000) Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
  • 55. Niclòs R, Puchades J, Coll C, Barberà MJ, Pérez-Planells L, Valiente JA, Sánchez JM (2021) Evaluation of Landsat-8 TIRS data recalibrations and land surface temperature split-window algorithms over a homogeneous crop area with different phenological land covers. ISPRS J Photogramm Remote Sens 174:237–253
  • 56. Norman JM, Becker F (1995) Terminology in thermal infrared remote sensing of natural surfaces. Agric For Meteorol 77(3–4):153–166
  • 57. NRSC (2014) Land Use/Land Cover database on 1:50,000 scale. Natural Resources Census Project, LUCMD, LRUMG, RSAA, National Remote Sensing Centre, ISRO, Hyderabad
  • 58. Palanisami K, Ranganathan C, Nagothu US, Kakumanu KR (2014) Climate change and agriculture in India: studies from selected river basins. Routledge India,
  • 59. Pennington DD, Collins SL (2007) Response of an aridland ecosystem to interannual climate variability and prolonged drought. Landscape Ecol 22(6):897–910
  • 60. Piegorsch WW, Bailer AJ (2005) Analyzing environmental data. Wiley, New York
  • 61. Rahman MT, Aldosary AS, Mortoja M (2017) Modeling future land cover changes and their effects on the land surface temperatures in the Saudi Arabian eastern coastal city of Dammam. Land 6(2):36
  • 62. Rai PK, Mishra VN, Singh S, Prasad R, Nathawat M (2017) Remote sensing-based study for evaluating the changes in glacial area: a case study from Himachal Pradesh. India Earth Syst Environ 1(1):1
  • 63. Raj PN, Azeez P (2010) Land use and land cover changes in a tropical river basin: a case from Bharathapuzha River basin, southern India. J Geogr Inf Syst 2(04):185
  • 64. Raj PN, Azeez P (2012) Trend analysis of rainfall in Bharathapuzha River basin, Kerala. India Int J Climatol 32(4):533–539
  • 65. Rangelova E, Van der Wal W, Sideris M, Wu P (2010) Spatiotemporal analysis of the GRACE-derived mass variations in North America by means of multi-channel singular spectrum analysis. In: Gravity, geoid and earth observation. Springer, Heidelberg, pp 539–546
  • 66. Roy P, Giriraj A (2008) Land use and land cover analysis in Indian Context. JApSc 8(8):1346–1353
  • 67. Saied P (2013) The impact of urban expansion on land surface temperatures in Sulaymaniyah City.
  • 68. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427(6972):332–336
  • 69. Sekertekin A, Bonafoni S (2020) Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing 12(2):294
  • 70. Sekertekin A, Kutoglu SH, Kaya S (2016) Evaluation of spatio-temporal variability in land surface temperature: A case study of Zonguldak. Turkey Environ Monit Assessment 188(1):30
  • 71. Shunlin L, Xin L, Xianhong X (2013) Land surface observation, modeling and data assimilation. World Scientific, Singapore
  • 72. Sidiqui P, Huete A, Devadas R Spatio-temporal mapping and monitoring of Urban Heat Island patterns over Sydney, Australia using MODIS and Landsat-8. In: 2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA), 2016. IEEE, pp 217–221
  • 73. Silva AT (2017) Introduction to Nonstationary Analysis and Modeling of Hydrologic Variables. In: Fundamentals of Statistical Hydrology. Springer, Heidelberg, pp 537–577
  • 74. Skliris N, Sofianos S, Gkanasos A, Mantziafou A, Vervatis V, Axaopoulos P, Lascaratos A (2012) Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dyn 62(1):13–30
  • 75. Sobrino JA, Jiménez-Muñoz JC, Paolini L (2004) Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Environ 90(4):434–440
  • 76. Spampinato L, Calvari S, Oppenheimer C, Boschi E (2011) Volcano surveillance using infrared cameras. Earth Sci Rev 106(1–2):63–91
  • 77. Stephens K, Wauthier C (2018) Satellite geodesy captures offset magma supply associated with lava lake appearance at Masaya volcano. Nicaragua Geophys Res Lett 45(6):2669–2678
  • 78. Tan K, Liao Z, Du P, Wu L (2017) Land surface temperature retrieval from Landsat 8 data and validation with geosensor network. Front Earth Sci 11(1):20–34
  • 79. Tang H, Li Z-L (2013) Quantitative remote sensing in thermal infrared: theory and applications. Springer Science & Business Media, Heidelberg
  • 80. Tang H, Li Z-L (2014) Land surface temperature retrieval from thermal infrared data. In: Quantitative remote sensing in thermal infrared. Springer, Heidelberg, pp 93–143
  • 81. Taxak AK, Murumkar A, Arya D (2014) Long term spatial and temporal rainfall trends and homogeneity analysis in Wainganga basin, Central India. Weather Clim Extremes 4:50–61
  • 82. Thapliyal V, Majumdar A, Krishnan V (2002) Weather in India-Monsoon Season (June to September 2001). Mausam 53:381–416
  • 83. Ullah S, Ahmad K, Sajjad RU, Abbasi AM, Nazeer A, Tahir AA (2019) Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region. J Environ Manage 245:348–357
  • 84. Wan Z, Hook S, Hulley G (2015) MOD11C3 MODIS/Terra Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V006. https://doi.org/10.5067/MODIS/MOD11C3.006
  • 85. Weng Q (2018) Remote sensing time series image processing. CRC Press, Boca Raton
  • 86. Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483
  • 87. Wild CJ, Seber GAF (1999) Time series. In: Seber G (ed) Chance encounters: a first course in data analysis and inference. Wiley, New York,
  • 88. Wooster M, Roberts G, Smith A, Johnston J, Freeborn P, Amici S, Hudak A (2013) Thermal infrared remote sensing: sensors, methods, applications.
  • 89. Zanter K (2015) Landsat 8 (L8) data users handbook. Department of the Interior US Geological Survey
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-eade9edd-dd61-4ba4-bd79-4d2f1cb3a0fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.