Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 37, Fasc. 2 | 471--496
Tytuł artykułu

A point process approach for spatial stochastic modeling of thunderstorm cells

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we consider two different approaches for spatial stochastic modeling of thunderstorms. Thunderstorm cells are represented using germ-grain models from stochastic geometry, which are based on Cox or doubly-stochastic cluster processes. We present methods for the operational fitting of model parameters based on available point probabilities and thunderstorm records of past periods. Furthermore, we derive formulas for the computation of point and area probabilities according to the proposed germ-grain models. We also introduce a conditional simulation algorithm in order to increase the model’s ability to precisely predict thunderstorm events. A systematic comparison of area probabilities, which are estimated from the proposed models, and thunderstorm records conclude the paper.
Wydawca

Rocznik
Strony
471--496
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
autor
  • Deutscher Wetterdienst, Research and Development, Frankfurter Str. 135, 63067 Offenbach, Germany, Reinhold.Hess@dwd.de
autor
Bibliografia
  • [1] A. Baddeley, I. Bárány, R. Schneider, and W. Weil, Stochastic Geometry, Springer, Berlin 2007.
  • [2] M. Baldauf, A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities, Mon. Weather Rev. 139 (12) (2011), pp. 3887-3905.
  • [3] A. Burton, C. G. Kilsby, H. J. Fowler, P. S. P. Cowpertwait, and P. E. O’Connell, RainSim: A spatial temporal stochastic rainfall modelling system, Environ. Model. Softw. 23 (12) (2008), pp. 1356-1369.
  • [4] S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and Its Applications, third edition, Wiley, Chichester 2013.
  • [5] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods, second edition, Springer, New York 2003.
  • [6] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Volume II: General Theory and Structure, second edition, Springer, New York 2008.
  • [7] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996, pp. 226-231.
  • [8] C. Gebhardt, S. E. Theis, M. Paulat, and Z. B. Bouallègue, Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries, Atmos. Res. 100 (2011), pp. 168-177.
  • [9] J. Illian, A. Penttinen, D. Stoyan, and H. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns, Wiley, Chichester 2008.
  • [10] P. M. Inness and S. Dorling, Operational Weather Forecasting, Wiley, Chichester 2013.
  • [11] P. James, B. K. Reichert, and D. Heizenreder, NowCastMIX – Optimized automatic warnings from continuously monitored nowcasting systems based on fuzzy-logic evaluations of storm attributes, in: 8th European Conference on Severe Storms, Vienna 2015.
  • [12] K. Knüpffer, Methodical and predictability aspects of MOS systems, in: Proceeding of the 13th Conference on Probability and Statistics in Atmospheric Sciences, San Francisco, CA, 1966, pp. 190-197.
  • [13] B. Kriesche, R. Hess, B. K. Reichert, and V. Schmidt, A probabilistic approach to the prediction of area weather events, applied to precipitation, Spat. Stat. 12 (2015), pp. 15-30.
  • [14] B. Kriesche, A. Koubek, Z. Pawlas, V. Beneš, R. Hess, and V. Schmidt, On the computation of area probabilities based on a spatial stochastic model for precipitation cells and precipitation amounts, Stoch. Environ. Res. Risk Assess. (2016), doi: 10.1007/s00477-016-1321-8.
  • [15] R. Krzysztofowicz, Point-to-area rescaling of probabilistic quantitative precipitation forecasts, J. Appl. Meteorol. 38 (1998), pp. 786-796.
  • [16] P. Lang, Cell tracking and warning indicators derived from operational radar products, in: Proceedings of the 30th International Conference on Radar Meteorology, Munich 2001, pp. 207-211.
  • [17] C. Q. Li, A stochastic model of severe thunderstorms for transmission line design, Probabilist. Eng. Mech. 15 (4) (2000), pp. 359-364.
  • [18] C. J. Onof, R. E. Chandler, A. Kakou, P. J. Northrop, H. S. Wheater, and V. S. Isham, Rainfall modelling using Poisson-cluster processes: A review of developments, Stoch. Environ. Res. Risk Assess. 14 (6) (2000), pp. 384-411.
  • [19] A. Paschalis, P. Molnar, S. Fatichi, and P. Burlando, A stochastic model for high-resolution space-time precipitation simulation, Water Resour. Res. 49 (12) (2013), pp. 8400-8417.
  • [20] R. Schneider and W. Weil, Stochastic and Integral Geometry, Springer, Berlin 2008.
  • [21] K. Wapler, The life-cycle of hail storms: Lightning, radar reflectivity and rotation characteristics, Atmos. Res. (submitted).
  • [22] D. S. Wilks, Statistical Methods in the Atmospheric Sciences, third edition, Academic Press, San Diego 2011.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-eadbad21-3715-47fc-8119-6d876939bb43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.