Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 24, Iss. 4 | 165--169
Tytuł artykułu

Gantry angle classification with a fluence map in intensity-modulated radiotherapy for prostate cases using machine learning

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigated the gantry-angle classifier performance with a fluence map using three machine-learning algorithms, and compared it with human performance. Eighty prostate cases were investigated using a seven-field-intensity modulated radiotherapy treatment (IMRT) plan with beam angles of 0°, 50°, 100°, 155°, 205°, 260°, and 310°. The k- nearest neighbor (k-NN), logistic regression (LR), and support vector machine (SVM) algorithms were used. In the observer test, three radiotherapists assessed the gantry angle classification in a blind manner. The precision and recall rates were calculated for the machine learning and observer test. The average precision rate of the k-NN and LR algorithms were 94.8% and 97.9%, respectively. The average recall rate of the k-NN and LR algorithms were 94.3% and 97.9%, respectively. The SVM had 100% precision and recall rates. The gantry angles of 0°, 155°, and 205° had an accuracy of 100% in all algorithms. In the observer test, average precision and recall rates were 82.6% and 82.6%, respectively. All observers could easily classify the gantry angles of 0°, 155°, and 205° with a high degree of accuracy. Misclassifications occurred in gantry angles of 50°, 100°, 260°, and 310°. Machine learning could better classify gantry angles for prostate IMRT than human beings. In particular, the SVM algorithm had a perfect classification of 100%
Słowa kluczowe
Wydawca

Rocznik
Strony
165--169
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
  • Hiroshima High-Precision Radiotherapy Cancer Center, 3-2-2, Futabanosato, Higashi-ku Hiroshima 732-0057, Japan, miura@hiprac.jp
  • Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
autor
  • Hiroshima High-Precision Radiotherapy Cancer Center, 3-2-2, Futabanosato, Higashi-ku Hiroshima 732-0057, Japan
  • Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
autor
  • Hiroshima High-Precision Radiotherapy Cancer Center, 3-2-2, Futabanosato, Higashi-ku Hiroshima 732-0057, Japan
autor
  • Hiroshima High-Precision Radiotherapy Cancer Center, 3-2-2, Futabanosato, Higashi-ku Hiroshima 732-0057, Japan
autor
  • Hiroshima High-Precision Radiotherapy Cancer Center, 3-2-2, Futabanosato, Higashi-ku Hiroshima 732-0057, Japan
autor
  • Hiroshima High-Precision Radiotherapy Cancer Center, 3-2-2, Futabanosato, Higashi-ku Hiroshima 732-0057, Japan
  • Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
Bibliografia
  • [1] Garapati SS, Hadjiiski L, Cha KH, et al. Urinary bladder cancer staging in CT urography using machine learning. Med Phys. 2017;44(11):5814-5823.
  • [2] Zhu X, Ge Y, Li T, et al. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning. Med Phys. 2011;38(2):719-726.
  • [3] Carlson JN, Park JM, Park SY, et al. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors. Phys Med Biol. 2016;61(6):2514-2531.
  • [4] Zhu X, Ge Y, Li T, et al. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning. Med Phys. 2011;38(2):719-26.
  • [5] Chanyavanich V, Das SK, Lee WR, et al. Knowledge based IMRT treatment planning for prostate cancer. Med Phys. 2011;38(5):2515-2522.
  • [6] Wang G, Kalra M, Orton CG. Machine learning will transform radiology significantly within the next 5 years. Med Phys. 2017;44(6):2041-2044.
  • [7] Michalski JM, Yan Y, Watkins-Bruner D, et al. Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the Radiation Therapy Oncology Group 0126 prostate cancer trial. Int J Radiat Oncol Biol Phys. 2013;87(5):932-938.
  • [8] Jursinic PA, Nelms BE. A 2-D diode array and analysis software for verification of intensity modulated radiation therapy delivery. Med Phys. 2003;30(5):870-879.
  • [9] van Zijtveld M, Dirkx ML, de Boer HC, et al. Dosimetric pre-treatment verification of IMRT using an EPID; clinical experience. Radiother Oncol. 2006;81(2):168-175.
  • [10] Kamino Y, Takayama K, Kokubo M, et al. Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head. Int J Radiat Oncol Biol Phys. 2006;66(1):271-278.
  • [11] Chen S, Zhou S, Yin FF, et al. Investigation of the support vector machine algorithm to predict lung radiation-induced pneumonitis. Med Phys. 2007;34(1):3808-3814.
  • [12] Klement RJ, Allgäuer M, Appold S, et al. Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;88(3):732-738.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ead715c3-7aae-4b29-85f7-c09a7b4d978b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.