Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
Today, traffic accidents are still a difficult and urgent problem for many countries around the world. Traffic accidents on highways are often more serious than accidents on urban roads. Therefore, disseminating emergency information and creating immediate connections with road users is key to rescuing passengers and reducing congestion. Thus, this study applies data fusion and data mining techniques to analyze travel time and valuable information about traffic accidents based on the real-time data collected from On-Board Unit installed in vehicles. The results show that this important information is the vital database to analyze traffic conditions and safety factors, thereby developing a smart traffic information platform. This result enables traffic managers to provide real-time traffic information or forecasts of congestion and traffic accidents to road users. This helps limit congestion and serious accidents on the Highway.
Rocznik
Tom
Strony
129--149
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Faculty of Civil Engineering, University of Transport and Communications, Hanoi, Vietnam, gianglk@utc.edu.vn
Bibliografia
- 1. “Taiwan RFID-based ETC Total Solution”. Available at: https://www.roc-taiwan.org/public/USlax_en_events/5860173671.pdf.
- 2. Xie T., Y. Liu. 2022. “Heterogeneous traffic information provision on road networks with competitive or cooperative information providers”. Transportation Research Part C: Emerging Technologies 142: 103762. ISSN: 0968-090X.
- 3. Chen C.H. 2021. “Temporal-Spatial Feature Extraction Based on Convolutional Neural Networks for Travel Time Prediction”. arXiv preprint arXiv:2111.00149.
- 4. Casteigts A., A. Nayak, I. Stojmenovic. 2011. “Communication protocols for vehicular ad hoc networks”. Wireless Communications and Mobile Computing 11(5): 567-582. ISSN: 1530-8677.
- 5. Rolison J.J., S. Regev, S. Moutari, A. Feeney. 2018. “What are the factors that contribute to road accidents? An assessment of law enforcement views, ordinary drivers’ opinions, and road accident records”. Accident Analysis & Prevention 115: 11-24. ISSN: 0001-4575.
- 6. Khorasani-Zavareh D., R. Mohammadi, H.R. Khankeh, L. Laflamme, A. Bikmoradi, B.J. Haglund. 2009. “The requirements and challenges in preventing of road traffic injury in Iran. A qualitative study”. BMC public health 9(1): 1-9. ISSN: 1471-2458.
- 7. Aloul F., I. Zualkernan, R. Abu-Salma, H. Al-Ali, M. Al-Merri. 2015. “iBump: Smartphone application to detect car accidents”. Computers & Electrical Engineering 43: 66-75. ISSN: 0045-7906.
- 8. Sacchi E., T. Sayed. 2016. “Conflict-Based Safety Performance Functions for Predicting Traffic Collisions by Type”. Transportation Research Record: Journal of the Transportation Research Board 2583: 50-55. ISSN: 0361-1981.
- 9. Guo M., X. Zhao, Y. Yao, P. Yan, Y. Su, C. Su, D. Wu. 2021. “A study of freeway crash risk prediction and interpretation based on risky driving behavior and traffic flow data”. Accident Analysis & Prevention 160: 106328.
- 10. Hu Y., Y. Yang, J. Liu, M. Bai. 2023. “Estimating freeway accident-prone sections: research on vehicle dynamic simulation and accident prediction model”. Proceedings of the Institution of Civil Engineers-Transport: 1-43. Thomas Telford Ltd.
- 11. Villiers C., L.D. Nguyen, J. Zalewski. 2019. “Evaluation of traffic management strategies for special events using probe data”. Transportation research interdisciplinary perspectives 2: 100052.
- 12. Karrouchi M., I. Nasri, M. Rhiat, I. Atmane, K. Hirech, A. Messaoudi, M. Melhaoui, K. Kassmi. 2023. “Driving behavior assessment: A practical study and technique for detecting a driver's condition and driving style. Transportation Engineering 14: 100217.
- 13. Gross F., B.N. Persaud, C. Lyon. 2010. “A guide to developing quality crash modification factors (No. FHWA-SA-10-032)”. United States. Federal Highway Administration. Office of Safety.
- 14. Office of the Assistant Secretary for Research and Technology (OST-R). “Integrated Vehicle-Based Safety Systems (IVBSS)”. Available at: http://www.its.dot.gov/ivbss/.
- 15. Dingus T.A., S.G. Klauer, V.L. Neale, A. Petersen, S.E. Lee, J. Sudweeks, M.A. Perez, J. Hankey, D. Ramsey, S. Gupta, C. Bucher, Z.R. Doerzaph, J. Jermeland, R.R. Knipling. 2006. “The 100-Car Naturalistic Driving Study: Phase II – Results of the 100-Car Field Experiment (Report No. DOT HS 810 593)”. Washington, DC: National Highway Traffic Safety Administration, USDOT.
- 16. Buzzacchi L., T.M. Valletti. 2005. “Strategic price discrimination in compulsory insurance markets”. The Geneva Risk and Insurance Review 30: 71-97.
- 17. Paefgen J., T. Staake, E. Fleisch. 2014. “Multivariate exposure modeling of accident risk: Insights from Pay-as-you-drive insurance data”. Accident Analysis and Prevention 61: 27-40.
- 18. Ministry of Transportation and Communications (MOTC). 2016. “Research of Information Service Sharing in Traffic Field Application - Discussion on Related Subject of Traffic Information Service”. Institute of Transportation.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ea7bab21-5acd-400e-aaa2-d4b996f7d575