Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 2 | 66--70
Tytuł artykułu

Deep Learning-based Beamforming Approach Incorporating Linear Antenna Arrays

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research delves into exploring machine learning and deep learning techniques relied upon in antenna design processes. First, the general concepts of machine learning and deep learning are introduced. Then, the focus shifts to various antenna applications, such as those relying on millimeter waves. The feasibility of employing antennas in this band is examined and compared with conventional methods, emphasizing the acceleration of the antenna design process, reduction in the number of simulations, and improved computational efficiency. The proposed method is a low-complexity approach which avoids the need for eigenvalue decomposition, the procedure for computing the entire matrix inversion, as well as incorporating signal and interference correlation matrices in the weight optimization process. The experimental results clearly demonstrate that the proposed method outperforms the compared beamformers by achieving a better signal-to-interference ratio.
Wydawca

Rocznik
Tom
Strony
66--70
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
Bibliografia
  • [1] M. Bengtsson and B. Ottersten, Optimum and Suboptimum Transmit Beamforming, in "Handbook of Antennas in Wireless Communications", Boca Raton, USA: CRC Press, 2002.
  • [2] A. Mukherjee et al., "Back Propagation Neural Network Based Cluster Head Identification in MIMO Sensor Networks for Intelligent Transportation Systems", IEEE Access, vol. 8, pp. 28524-28532, 2020.
  • [3] E. Ali, M. Ismail, R. Nordin, and N.F. Abdulah, "Beamforming Techniques for Massive MIMO Systems in 5G: Overview, Classification, and Trends for Future Research", Frontiers of Information Technology Electronic Engineering, vol. 18, no. 6, pp. 753-772, 2017.
  • [4] J. Zander and S.-L. Kim, Radio Resource Management for Wireless Networks, Boston: Artech, 378 p., 2001 (ISBN: 9781580531467).
  • [5] W. Yang and G. Xu, "Optimal Downlink Power Assignment for Smart Antenna Systems", Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98, Seattle, USA, 1998.
  • [6] D. Gerlach and A. Paulraj, "Base Station Transmitting Antenna Arrays for Multipath Environments", Signal Processing, vol. 54, no. 1, pp. 59-73, 1996.
  • [7] A. Mukherjee et al., "Deep Neural Network-based Clustering Technique for Secure IIoT", Neural Computing and Applications, vol. 32, pp. 16109-16117, 2020.
  • [8] Z.F. Al-Azzawi et al., "Designing Eight-port Antenna Array for Multi-Band MIMO Applications in 5G Smartphones", Journal of Telecommunication and Information Technology, no. 4, 2023.
  • [9] H.M. El Misilmani, T. Naous, and S.K. Al Khatib, "A Review on the Design and Optimization of Antennas Using Machine Learning Algorithms and Techniques", International Journal of RF and Microwave Computer-Aided Engineering, vol. 30, no. 10, art. no. 22356, 2020.
  • [10] T.K.L. Hui and R.S. Sherratt, "Coverage of Emotion Recognition for Common Wearable Biosensors", Biosensors, vol. 8, no. 2, art. no. 30, 2018.
  • [11] I. Bacivarov, P. Corcoran, and M. Ionita, "Smart Cameras: 2D Affine Models for Determining Subject Facial Expressions", IEEE Transactions on Consumer Electronics, vol. 56, no. 2, pp. 289-297, 2010.
  • [12] Y. Chen, D. Chen, and T. Jiang, "Beam-squint Mitigating in Reconfigurable Intelligent Surface Aided Wideband mmWave Communications", 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 2021.
  • [13] H. Al Kassir et al., "A Review of the State of the Art and Future Challenges of Deep Learning-based Beamforming", IEEE Access, vol. 10, pp. 80869-80882, 2022.
  • [14] W.-C. Kao, S.-Q. Zhan, and T.-S. Lee, "AI-aided 3-D Beamforming for Millimeter Wave Communications", 2018 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Ishigaki, Japan, 2018.
  • [15] R.I. Bendjillali, M.S. Bendelhoum, A.A. Tadjeddine, and M. Kamline, "Deep Learning-Powered Beamforming for 5G Massive MIMO Systems", Journal of Telecommunications and Information Technology, no. 4, pp. 38-45, 2023.
  • [16] T. Liu et al., "Wavoice: A Noise-resistant Multi-modal Speech Recognition System Fusing mmWave and Audio Signals", Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, pp. 97-110, 2021.
  • [17] Z.D. Zaharis et al., "An Effective Modification of Conventional Beamforming Methods Suitable for Realistic Linear Antenna Arrays", IEEE Transactions on Antennas and Propagation, vol. 68, no. 7, pp. 5269-5279, 2020.
  • [18] P.D. Paikrao, A. Mukherjee, D.K. Jain, P. Chatterjee, and W. Alnumay, "Smart Emotion Recognition Framework: A Secured IoVT Perspective", IEEE Consumer Electronics Magazine, vol. 12, no. 1, pp. 80-86, 2023.
  • [19] H. Boche and M. Schubert, "Solution of the SINR Downlink Beamforming Problem", in Proc. 36th Conf. Inform. Sci. Syst. (CISS), Princeton, USA, 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ea67fcca-89f8-4c92-8333-0bff4edd5a42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.