Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 17, no 6 | 301--314
Tytuł artykułu

Classification of Deflections of Thin-Walled Elements Made of EN AW-7075A Aluminum Alloy During Milling

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research is to classify and evaluate the size of deformations appearing during milling of thin-walled elements representing a pocket form made of aluminum alloy AW-7075A. Finishing, which is the purpose of the research, was carried out at the full depth of cut ap = 15 mm, milling the entire height of the wall in one pass. Deformations during machining were correlated with the geometric accuracy of the workpieces after machining. During the tests, deformations were measured with a laser displacement sensor, and the temperature of the samples was measured using a resistance temperature sensor. The tests made it possible to identify deformations occurring during the milling of thin-walled elements. The course of deformation during milling was analyzed, from which the value of deformation caused by milling, the reaction to this deformation and its time were extracted, additionally, permanent distortion of the workpiece was detected. The results show the effect of the ratio of the height to the thickness of the thin-walled element on its geometric accuracy after machining in the form of straightness and flatness of the samples. The test results were compared to the tests carried out on the Ti6Al4V titanium alloy, which confirmed the influence of the material selection on the course of deformations during milling.
Wydawca

Rocznik
Strony
301--314
Opis fizyczny
Bibliogr. 27 poz., fig., tab.
Twórcy
  • Division of Machining, Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 3 Piotrowo St., 60-965 Poznan, Poland, jakub.czyzycki@put.poznan.pl
  • Division of Metrology and Measurement Systems, Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 3 Piotrowo St., 60-965 Poznan, Poland, lidia.marciniak-podsadna@put.poznan.pl
  • Division of Machining, Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 3 Piotrowo St., 60-965 Poznan, Poland, pawel.twardowski@put.poznan.pl
Bibliografia
  • 1. Bao Y., Wang B., He Z., Kang R., Guo J. Recent progress in flexible supporting technology for aerospace thin-walled parts: A review. Chinese Journal of Aeronautics 2021; 1–17.
  • 2. Qu S., Zhao J., Wang T. Experimental study and machining parameter optimization in milling thin-walled plates based on NSGA-II. Int J Adv Manuf Technol 2017; 89(5–8): 2399–409.
  • 3. Izamshah R.A. R., Mo J., Ding SL. Finite Element Analysis of Machining Thin-Wall Parts. KEM 2010; 458: 283–8
  • 4. Wu Q., Li L., Zhang YD. Simulations and Experiments on Vibration Control of Aerospace Thin-Walled Parts via Preload. Shock and Vibration 2017; 2017: 1–7.
  • 5. Kolluru K., Axinte D., Becker A. A solution for minimising vibrations in milling of thin walled casings by applying dampers to workpiece surface. CIRP Annals 2013; 62(1): 415–8.
  • 6. Zhu W., Zhuang J., Guo B., Teng W., Wu F. An optimized convolutional neural network for chatter detection in the milling of thin-walled parts. Int J Adv Manuf Technol 2020; 106(9–10): 3881–95.
  • 7. Zawada-Michałowska M. High-Performance Milling Techniques of Thin-Walled Elements. Adv Sci Technol Res J 2022; 16(3): 98–110.
  • 8. Kuczmaszewski J., Zaleski K., Matuszak J., Mądry J. Testing Geometric Precision and Surface Roughness of Titanium Alloy Thin-Walled Elements Processed with Milling. Advances in Manufacturing II 2019; 5: 95–106.
  • 9. Rubeo M.A., Schmitz T.L. Global stability predictions for flexible workpiece milling using time domain simulation. Journal of Manufacturing Systems 2016; 40: 8–14.
  • 10. Shi J., Song Q., Liu Z., Ai X. A novel stability prediction approach for thin-walled component milling considering material removing process. Chinese Journal of Aeronautics 2017; 30(5): 1789–98.
  • 11. Soori M., Asmael M. Deflection Error Prediction and Minimization in 5-Axis Milling Operations of Thin-Walled Impeller Blades. Mechanical Engineering 2021; 1–21.
  • 12. Czyżycki J., Twardowski P., Znojkiewicz N. Analysis of the Displacement of Thin-Walled Workpiece Using a High-Speed Camera during Peripheral Milling of Aluminum Alloys. Materials 2021; 14(16): 4771.
  • 13. Czyżycki J., Twardowski P. Evaluation of Deflection of Thin-Walled Profile During Milling of Hardened Steel. Industrial Measurements in Machining 2020; 22–32.
  • 14. Bałon P., Rejman E., Świątoniowski A., Kiełbasa B., Smusz R., Szostak J., Szostak., Cieślik J., Kowalski Ł. Thin-walled Integral Constructions in Aircraft Industry. Procedia Manufacturing 2020; 47: 498–504.
  • 15. Hussain A., Lazoglu I. Distortion in milling of structural parts. CIRP Annals 2019; 68(1): 105–8.
  • 16. Zawada-Michałowska M., Kuczmaszewski J., Pieśko P. Effect of the Geometry of Thin-Walled Aluminium Alloy Elements on Their Deformations after Milling. Materials 2022; 15(24): 9049.
  • 17. Zhu P., Liu Z., Ren X., Cai Y. Machining Distortion for Thin-Walled Superalloy GH4169 Caused by Residual Stress and Manufacturing Sequences. Metals 2022; 12(9): 1460.
  • 18. Jiang X., Wang Y., Ding Z., Li H. An approach to predict the distortion of thin-walled parts affected by residual stress during the milling process. Int J Adv Manuf Technol 2017; 93(9–12): 4203–16.
  • 19. Jiang X., Li B., Yang J., Zuo XY. Effects of tool diameters on the residual stress and distortion induced by milling of thin-walled part. Int J Adv Manuf Technol 2013; 68(1–4): 175–86.
  • 20. Gang L. Study on deformation of titanium thinwalled part in milling process. Journal of Materials Processing Technology 2009; 209(6): 2788–93.
  • 21. Chen W., Xue J., Tang D., Chen H., Qu S. Deformation prediction and error compensation in multilayer milling processes for thin-walled parts. International Journal of Machine Tools and Manufacture 2009; 49(11): 859–64.
  • 22. Kuczmaszewski J., Łogin W., Pieśko P., Zagórski I. State of Residual Stresses After the Process of Milling Selected Aluminium Alloys. Adv Sci Technol Res J 2018; 12(1): 63–73.
  • 23. Wang T., Zha J., Jia Q., Chen Y. Application of lowmelting alloy in the fixture for machining aeronauti- cal thin-walled component. Int J Adv Manuf Technol 2016; 87(9–12): 2797–807.
  • 24. Scippa A., Grossi N., Campatelli G. FEM based Cutting Velocity Selection for Thin Walled Part Machining. Procedia CIRP 2014; 14: 287–92.
  • 25. Meshreki M. Dynamics of Thin-Walled Aerospace Structures for Fixture Design in Multi-axis Milling. Journal of Manufacturing Science and Engineering 2008; 130(3): 031011.
  • 26. Su Y., He N., Li L., Li XL. An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear 2006; 261(7–8): 760–6.
  • 27. Singh G., Aggarwal V., Singh S. Critical review on ecological, economical and technological aspects of minimum quantity lubrication towards sustainable machining. Journal of Cleaner Production 2020; 271: 122185.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ea5e7971-3bd2-42bd-862a-a24f06ffe89c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.