Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, iss. 7 | 251--259
Tytuł artykułu

Effect of Inclination and Thermoelectric Material on the Performance of Solar PV-Thermo Electric Cooling System

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solar photovoltaic (PV) systems, coupled with thermo-electric cooling, have gained significant attention as an eco-friendly solution. To enhance energy efficiency and reduce the overall environmental impact of energy generation and consumption, it is a viable option. This study investigates the impact of critical parameters, namely inclination angle of solar panels, the type of material used in thermo-electric cooling modules, on the performance of a solar PV-thermo electric cooling system. In this research, the impact of inclination angles (15°, 20°, 25°) and two materials (Bismuth telluride and Peltium telluride) of thermoelectric were considered for this study. A comprehensive series of experiments were conducted to analyze the impact of varying inclination angles of the solar panels and material of thermoelectric cooler. The average incident irradiation, panel temperature and outpower of solar panel variation with time are presented. The optimum tilt angle of the solar panel is observed as 20° and material for thermoelectric cooler is Bismuth telluride. When using Bismuth telluride as a thermoelectric material with 20° tilt angle, the solar panel’s temperature decreases by 14% and its outpower is augments by a maximum of 14.5%. The results presented here offer practical guidance for system design and operation, ultimately promoting the widespread adoption of this technology in a more environmentally conscious manner.
Wydawca

Rocznik
Strony
251--259
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, 532127, India, ravibabu.s@gmrit.edu.in
  • Department of Mechanical Engineering, Rajiv Gandhi University of Knowledge Technologies, Nuzvid, Andhra Pradesh, 521202, India, basha@rguktn.ac.in
  • Department of Mechanical Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, 532127, India, sasikumar.g@gmrit.edu.in
  • Department of Mechanical Engineering, Rajiv Gandhi University of Knowledge Technologies, Nuzvid, Andhra Pradesh, 521202, India, pradeep.p@rguktn.ac.in
Bibliografia
  • 1. Aditya, C., Vineet, T., Anand, S. 2018. Futuristic approach for thermal management in solar/PV thermal systems with possible applications, Energy Conversion and management, 163, 314–354.
  • 2. Ahmad, A., Baig, H., Sundaram, S., Tapas, K.M. 2019, Use of nanofluids in solar PV/Thermal systems, International Journal of Photoenergy, 8039129, 1–18.
  • 3. Ali, H.A., Sopian, K., Miqdam, C.T., Kazem, H.A., Hasan, H.A., Ali, N.A.S. 2017. An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system, Energy Conversion and management, 142, 547–558.
  • 4. Bassam, A.M., Sopian, K., Ibrahim, A., Fouzan, M.F., Anwer, A.B., Ghaith, Y.A. 2023. Experimental analysis for the PVT collector with nano PCM and micro-fins tube nanofluid, Case Studies in Thermal Engineering, 41(102579), 1–10.
  • 5. Bassam, A.M., Kamaruzaman, S., Adnan, B.I. 2021. Photo voltaic Thermal with advanced tube design and working fluid: A Review, 11(2), 1–12.
  • 6. Charaf, H., Benhmida, M., Bendaoud, R., Amiry, H., Bounouar, S., Ghennioui, A., Chanaa, F., Yadir, S., Ahmed, E., Ezzaki, H. 2019, Temperature effect on the PV module performace under real operating conditions, International Journal of Renewable Energy Research, 9(1), 1–13.
  • 7. Elavarasan, R.M., Mudgal, V., Selvamanohar, L., Wang, K., Huang, G., Shafiullah, G.M., Markides, C.N., Reddy, K.S., Nadarajah, M. 2022. Pathways toward high-efficiency solar photovoltaic thermal management for electrical, thermal and combined generation applications: A critical review, Energy Conversion and management, 255(115278), 1–31.
  • 8. Faran, H.A., Sukanta, N., Sanjay., Manikanth, P. 2023. Numerical analysis with experimental validation for thermal performance of flat plate solar water heater using CuO/ distilled water nanofluid in closed loop, 37(5), 2649–2656.
  • 9. Gad, R., Mahmoud, H., Ookawara, S., Hassan, H. 2023. Evaluation of thermal management of photovoltaic solar cell via hybrid cooling system of phase change material (PCM) inclusion hybrid nanoparticles coupled with flat heat pipe, Journal of Energy Storage, 57(106185), 1–16.
  • 10. Joe, H.L., Seong, G.H., Lee, G.H. 2019. Efficiency Improvement of a PVT System Using Nanofluids, Energies, 12, 3063, 1–16.
  • 11. Khan, M.A.I., Khan, M.I., Kazim, A.H., Shabir, A., Riaz, F., Mustafa, N., Javed, H., Raza, A., Hussain, M., Salman, C.A. 2021, An experimental and Comparative Performance Evaluation of a Hybrid Photovoltaic-Thermoelectric System, Frontiers in Energy Research, 9, 722514, 1–9.
  • 12. Moafaq, K.S.A., Khaleel, I.A., Ahmad. Q.S., Raid, S.J., Hussain, A.K. 2021. The possibilities of using nano CuO as a coolant for PVT system: An experimental study, Journal of Physics: Conference Series, 1973, 012123, 1–10.
  • 13. Mohsen, S., Ahmadi, M.H., Jaroon, R., Mohsen, F.M. 2022. Thermal Management of Solar Photovoltaic Cell by Using SWCNT/Water nanofluid: Numerical Simulation and Sensitivity, Sustainability, 14, 11523, 1–19.
  • 14. Muniyandy, E., Bhaskaran, S., Robert, C., Saranya, A., Ramachandran, M. 2022. Experimental Study of a Hybrid Solar Collector Using TiO2 /Water Nanofluids, Energies, 15, 4425, 1–12.
  • 15. Prasetyo, S.D., Prabwo, A.R., Arifin, Z. 2023. The use of a hybrid photovoltaic/thermal (PVT) collector system as a sustainable energy harvest instrument in urban technology, Heliyon, 9(2), 13390, 1–25.
  • 16. Ramos, C.A.F., Alcaso, A.N., Cardoso, A.J.M. 2019. Photo voltaic-thermal technology: Review and case study, IoP Conference Series: Earth and Environmental Series, 354, 012048, 1–11.
  • 17. Rosli, M.A.M., Loon, Y.W., Nawam, M.Z., Suhaimi, M., Aiman, R., Faridah, H., Nurfaizey, A.H., Zainal, A., Safarudin, G.H. 2021. Validation Study of Photovoltaic Thermal Nanofluid Based Coolant Using Computational Fluid Dynamics Approach, CFD Letters, 13(3), 58–71.
  • 18. Sandeep, S.J., Amol, M.A., Nihkil, A.B., Nithin, P.G. 2019. Thermal Management of Photovoltaic Systems – case studies, IoP Conference Series: Journal of Physics, 1240, 012021, 1–8.
  • 19. Sangeetha, M., manigandan, S., Ashok, B., Brindadevi, K., Pigazhendhi, A. 2021. Experimental investigation of nanofluid based PV/T system for superior electrical efficiency and hydrogen production, Fuel, 286, 119422, 1–8.
  • 20. Sardarabadi, M., Passandedeh-Fard, M. 2016. Experimental and numerical study of metal-oxides/water nanofluids as coolant in PVT systems, Solar Energy Materials & Solar cells, 157, 533–542.
  • 21. Shaker, L.M., Ahmed, A.A., Mahdi, M.H., Waheed, K.A.A., Abdul, A.H.K. 2024. Examining the influence of thermal effects on solar cells: A comprehensive Review, Sustainable Energy Research, 11(6), 1–30.
  • 22. Sharaf, M., Yousef, M.S., Huzayyin, A.S. 2022. Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environmental Science Pollution Research, 29, 26131–26159.
  • 23. Srinivasulu, G., Basha, M.M., Madhurima, V., Praveena, N., Venkatesh Kumar, S. 2021. An Experimental Performance on Solar PVT Collector with Nanofluids for Sustainable Development, Journal of nanomaterials, 6946540, 1–6.
  • 24. Tirupati Rao, V., Raja Sekhar, Y. 2023. Hybrid Photovoltaic/Thermal (PVT) Collector Systems with Different Absorber Configurations for Thermal Management – A Review, Energy & Environment, 34(3), 690–735.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ea4ce48c-8307-4425-8a9f-17105d6613db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.