Warianty tytułu
Języki publikacji
Abstrakty
The so-called intermediate model (IM) was applied in the paper to quantitatively describe complex trajectories. Using this model it was possible to find the proper fitting function for describing random trajectories that were recorded during the walking process performed by a volunteer. Experimental data were acquired using a three-dimensional Motion Capture system during normal gait of a healthy person on an automatic treadmill. The major aim of this research was to find if the IM is applicable to fit typical biomechanical measurement data. Motion Capture data collection is very time-consuming and requires a lot of memory, so storing movement trajectories in a parametric form helps to increase the data processing efficiency and mathematical analysis. As a result of the original treatment procedure described in this paper, we obtained a very accurate fit of the measured data. The results of this research can be used to model the movement of mechanical devices and for diagnostic purposes.
Czasopismo
Rocznik
Tom
Strony
200--210
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
- Kazan National Research Technical University, Radioelectronics and Informative-Measurements Technics Department, Karl Marx str., 10, Kazan, Tatarstan 420111, Russian Federation, renigmat@gmail.com
autor
- Kazan National Research Technical University, Radioelectronics and Informative-Measurements Technics Department, Karl Marx str., 10, Kazan, Tatarstan 420111, Russian Federation, morozovars@yandex.ru
autor
- Lódz University of Technology, Department of Automation, Biomechanics and Mechatronics, 1/15 Stefanowski Street, Lódz 90-924, Poland, jan.awrejcewicz@p.lodz.pl
autor
- Lódz University of Technology, Department of Automation, Biomechanics and Mechatronics, 1/15 Stefanowski Street, Lódz 90-924, Poland, michal.ludwicki@p.lodz.pl
Bibliografia
- [1] Gribble PL, Ostry DJ. Compensation for interaction torques during single- and multijoint limb movement. J Neurophysiol 1999;82:2310–26. http://dx.doi.org/10.1152/jn.1999.82.5.2310.
- [2] Zagrodny B, Ludwicki M, Wojnicz W, Mrozowski J, Awrejcewicz J. Cooperation of mono- and bi-articular muscles: human lower limb. J Musculoskelet Neuronal Interact 2018;18:176–82.
- [3] Flash T, Meirovitch Y, Barliya A. Models of human movement: trajectory planning and inverse kinematics studies. Robot Auton Syst 2013;61:330–9. http://dx.doi.org/10.1016/j.robot.2012.09.020.
- [4] Vimieiro C, Andrada E, Witte H, Pinotti M. A computational model for dynamic analysis of the human gait. Comput Methods Biomech Biomed Eng 2015;18:799–804. http://dx.doi.org/10.1080/10255842.2013.848859.
- [5] Moreira P, Lugrís U, Cuadrado J, Flores P. Biomechanical models for human gait analyses using inverse dynamics formulation. 5³ Congresso Nacional de Biomecânica. Sociedade Portuguesa de Biomecânica; 2013. p. 1–6.
- [6] Xiao T, Fu Y-F. Biomechanical modeling of human body movement. J Biom Biostat 2016;7:1–4. http://dx.doi.org/10.4172/2155-6180.1000309.
- [7] Mondal S, Nandt A, Chakraborty P, Nand GC. A central pattern generator based nonlinear controller to simulate biped locomotion with a stable human gait oscillation. Int J Robot Autom 2011;2:93–106.
- [8] Grzelczyk D, Szymanowska O, Awrejcewicz J. Gait pattern generator for control of a lower limb exoskeleton. Vib Phys Syst 2018;29. 2018007:1–10.
- [9] Lin X, Amer MR. Human motion modeling using DVGANs; 2018;10652, arXiv abs/1804.
- [10] Gorton GE, Hebert DA, Gannotti ME. Assessment of the kinematic variability among 12 motion analysis laboratories. Gait Post 2009;29:398–402. http://dx.doi.org/10.1016/j.gaitpost.2008.10.060.
- [11] Nigmatullin RR, Maione G, Lino P, Saponaro F, Zhang W. The general theory of the quasi-reproducible experiments: how to describe the measured data of complex systems? Commun Nonlin Sci Numer Simul 2017;42:324–41. http://dx.doi.org/10.1016/J.CNSNS.2016.05.019.
- [12] Nigmatullin RR, Zhang W, Yang R, Lu Y, Maione G. ‘‘Universal’’ fitting function for quantitative description of quasi-reproducible measurements. Comput Commun Collab 2017;5:8–34.
- [13] Hak L, Houdijk H, van der Wurff P, Prins MR, Mert A, Beek PJ, et al. Stepping strategies used by post-stroke individuals to maintain margins of stability during walking. Clin Biomech 2013;28:1041–8. http://dx.doi.org/10.1016/J.CLINBIOMECH.2013.10.010.
- [14] Crane E, Gross M. Motion capture and emotion: affect detection in whole body movement. Affective computing and intelligent interaction. Berlin, Heidelberg: Springer; 2007. p. 95–101. http://dx.doi.org/10.1007/978-3-540-74889-2_9.
- [15] Kuzmych O, Awrejcewicz J, Aitouche A, Bahniuk N. Robust control for human postural balance: design and simulation. Proceedings of the 7th International Conference on Systems and Control; 2018. p. 454–61.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e9e8c417-59fd-405f-8229-eb2efb9f33da