Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 61, nr 2 | 302—307
Tytuł artykułu

Influence of solvent on the surface morphology and optoelectronic properties of a spin coated polymer thin films

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this paper was to investigate changes in surface morphology and optoelectronic properties of MEH-PPV thin films. Thin films were prepared using spin coating method. Design/methodology/approach: The changes in surface topography was observed by the atomic force microscope AFM. The results of thin films roughness have been prepared in the software XEI. The UV/VIS spectrometer was used to investigate absorbance of the obtained thin films. Findings: Results and their analysis allow to conclude that the solvent, which is an important factor in spin coating technology has an influence on surface morphology and optoelectronic properties of MEH-PPV thin films. Practical implications: Known MEH-PPV optoeletronic properties and the possibility of obtaining a uniform thin film show that it can be a good material for optoelectronic and photovoltaic application. Originality/value: The paper presents some researches of MEH-PPV thin films deposited by spin coating method deposition on glass BK7. A MEH-PPV solution was prepared using three different solvents: chlorobenzene, chloroform and pyridine.
Wydawca

Rocznik
Strony
302—307
Opis fizyczny
Bibliogr. 18 poz., rys. tab.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Department of Physics, Center of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Sklodowska 34, 41-819 Zabrze, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, magdalena.szindler@polsl.pl
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] T. Skothei, J. Reynolds, Handbook of conducting polymers 16, 2007.
  • [2] The Nobel Prize in Chemistry 2000, web site http://nobelprize.org/nobel_prizes/chemistry/laureates/2000 public.html.
  • [3] Pratt, Conducting Polymers, web site http://hompage .dtn.ntl.com/colin pratt/cpoly.htm.
  • [4] Conductiive polymers BBC group report, web site http://www.bccresearch.com/report/PLS043B.html.
  • [5] A. Hajduk, J. Weszka, V. Cozan, B. Kaczmarczyk, B. Jarząbek, M. Domański, Optical properties of polyazomethine with oxygen atom in the backbone, Archives of Materials Scienceand Engineering 32/2 (2008) 85-88.
  • [6] J. Weszka, M. Domański, B. Jarząbek, J. Jurusik, J. Cisowski, A. Burian, Influence of technological conditions on electronic transitions in chemical vapor deposited poly(azomethine) thin films, Thin Solid Films 516 (2008) 3098-3104.
  • [7] J Stabik, A Dybowska, M Chomiak, Polymer composites filled with powders as polymer graded materials 43/1 (20110) 153-161.
  • [8] M. Szczepanik, J. Stabik, G. Wróbel, Ł. Wierzbicki, Detecting of defects in polymeric materials using pulsed infrared thermography, Archives of Materials Science and Engineering 30/1 (2008) 29-32.
  • [9] Kroekchai Inpor, Vissanu Meeyoo, Chanchana Thanachayanont, Enhancement of photovoltaic performance using hybrid CdS nanorods and MEH-PPV active layer in ITO/TiO2/MEH-PPV:CdS/Au devices, Current Applied Physics 11 11/1 (2011) 171-174.
  • [10] P.M. Sirimanne, E.V.A. Premalal, P.K.D.D.P. Pitigala, K. Tennakone, Utilization of MEH-PPV as a sensitizer in titana-based photovoltaic cells, Solar Energy Materials and Solar Cells 90/11 (2006) 1673-1679.
  • [11] A.R. Barkhouse, H.E. Bishop, B.M. Henry, G.R. Webster, P.L. Burn, H.E. Assender, Improving efficiency of MEH-PPV/TiO2 solar cells by lithium salt modification, Organic Electronics 11/4 (2010) 649-657.
  • [12] J. Weszka, M.M. Szindler, M. Chwastek-Ogierman, M. Bruma, P. Jarka, CLSM and UV-VIS researches on polyoxadiazoles thin films, Archives of Materials Science and Engineering 55 (2012) 53-61.
  • [13] M. Lira-Cantu, F.C. Krebs, Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2,Nb2O5, ZnO, CeO2 and CeO2-TiO2), Performance improvement during long-time irradiation, Solar Energy Materials and Solar Cells 90/14 (2006) 2076-2086.
  • [14] R. Gvishi, Fast sol-gel technology: from fabrication to applications, Journal of Sol-Gel Science and Technology 50 (2009) 241-253.
  • [15] H. Podbielska, Sol-gel materials for biomonitoring and biomedical applications, Wroclaw, 2002.
  • [16] A. Kumar, Gaurav, A. Malik, D. Tewary, B. Singh, A review on development of solid phase microextraction fibers by sol-gel methods and their applications, Analytica Chimica Acta 610/1 (2008) 1-14.
  • [17] L.A. Dobrzański, K. Lukaszkowicz, D. Pakuła, J. Mikuła, Corrosion resistance of multilayer and gradient coatings deposited by PVD and CVD techniques, Archives of Materials Sience and Engineering 28/1 (2007) 12-18
  • [18] A.D. Dobrzańska-Danikiewicz, K Gołombek, D Pakuła, J. Mikuła, M Staszuk, L.W. Żukowska, Long-term development directions of PVD/CVD coatings deposited onto sintered tool materials 49/2 (2011) 69-96.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e971e02d-7b13-4993-954d-1428a60e25f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.