Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 73, nr 3 | 721--741
Tytuł artykułu

Design of a six-phase surface mounted permanent magnet synchronous motor with application to electric trucks

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As we have known, permanent magnet synchronous motors (PMSMs) have garnered widespread interest across various industrial applications thanks to their advantages such as high efficiency, reliable performance, simple structure, and adaptability to various shapes and sizes. Due to characteristics of the high torque and low speed, the PMSMs make particularly well-suited for traction applications such as trucks, ship propulsion, mining, and more. In this context, a combination of the analytical method and finite element method (FEM) is proposed for designing and simulating a six-phase surface-mounted PMSM. Firstly, a model of the six-phase PMSM is analytically design to make required/main dimensions. The FEM is then applied to analyse and verify electromagnetic parameters such as of the current waveform, back electromagnetic force (EMF), magnetic flux density in the air gap, flux linkage, torque, cogging torque, torque ripple and harmonic components. Via the obtained results, the research will give a contribution of valuable insights for optimizing the design, performance and reliability for this motor in diverse industrial applications.
Wydawca

Rocznik
Strony
721--741
Opis fizyczny
Bibliogr. 34 poz., fot., rys., tab., wykr., wz.
Twórcy
  • Laboratory of High Performance electric machines (HiPems), Vietnam, vuong.dangquoc@hust.edu.vn
  • School of Electrical and Electronic Engineering, Ha Noi University of Science and Technology, Vietnam
  • Laboratory of High Performance electric machines (HiPems), Vietnam
Bibliografia
  • [1] Del Pizzo A., Di Noia L.P., Di Tommaso A.O., Miceli R., Rizzo R., Comparison between 3-ph and 6-ph PMSM drives for the electric propulsion of unmanned aerial vehicles, 2021 IEEE 15th International Conference on Compatibility, Power Electronics and Power Engineering, Italy, pp. 1–5 (2021), DOI: 10.1109/CPE-POWERENG50821.2021.9501082.
  • [2] Cheng L., Sui Y., Zheng P., Yin Z., Wang C., Influence of Stator MMF Harmonics on the Utilization of Reluctance Torque in Six-phase PMASynRM with FSCW, Energies, vol. 11, no. 108, pp. 1–17 (2017), DOI: 10.3390/en11010108.
  • [3] Iyer L.V., Lai C., Dhulipati H., Mukundan S., Mukherjee K., Kar N., Investigation of a Six-Phase Interior Permanent Magnet Synchronous Machine for Integrated Charging and Propulsion in EVs, SAE International Journal of Alternative Powertrains, vol. 7, no. 2, pp. 103–116 (2018), DOI: 10.4271/08- 07-02-0006.
  • [4] Won H., Hong Y.-K., Platt J., Choi M., Bryant B., Choi S., Six-phase Fractional-slot Concentrated Winding Ferrite Spoke-type Permanent Magnet Synchronous Motor for Electric Truck, IEEE International Electric Machines & Drives Conference (IEMDC), Hartford, CT, USA, pp. 17–20 (2021), DOI: 10.1109/IEMDC47953.2021.9449491.
  • [5] Jin F., Si J., Cheng Z., Su P., Dong L., Qi G., Analysis of a Six-Phase Direct-Drive Permanent Magnet Synchronous Motor with Novel Toroidal Windings, IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, pp. 14–17 (2019), DOI: 10.1109/VPPC46532.2019.8952311.
  • [6] Islam M.Z., Bonthu S.S.R., Choi S., Comparison of two different winding topologies for external-rotor five-phase PM-assisted synchronous reluctance motor in vehicle applications, IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA, pp. 1–6 (2017), DOI: 10.1109/IEMDC.2017.8002399.
  • [7] Scuiller F., Semail E., Charpentier J.-F., Letellier P., Multi-criteria-based design approach of multi-phase permanent magnet low-speed synchronous machines, Electric Power Applications, IET, vol. 3, no. 2, pp. 102–110 (2009), DOI: 10.1049/iet-epa:20080003.
  • [8] Patel V.I., Wang J., Wang W., Chen X., Six-Phase Fractional-Slot-per-Pole-per-Phase Permanent-Magnet Machines with Low Space Harmonics for Electric Vehicle Application, IEEE Transactions on Industry Applications, vol. 50, no. 4, pp. 2554–2563 (2014), DOI: 10.1109/TIA.2014.2301871.
  • [9] Yanqi Wei, Si Ji, Cheng Zhiping, Xu Shuai, Dong Lianghui, Liang Jing, Design and characteristic analysis of a six-phase direct-drive permanent magnet synchronous motor with 60◦phase-belt toroidal winding configuration for electric vehicle, IET Electric Power Applications, vol. 14, no. 13, pp. 2659–2666 (2020), DOI: 10.1049/iet-epa.2020.0083.
  • [10] Li X., Tan Y., Yan B., Zhao Y., Wang H., Demagnetization Modeling and Analysis for a Six-Phase Surface-Mounted Field-Modulated Permanent-Magnet Machine Based on Equivalent Magnetic Network, Energies, vol. 16, no. 16, 6099 (2023), DOI: 10.3390/en16166099.
  • [11] El-Refaie A., Alexander J.P., Galioto S., Reddy P.B., Huh K., Bock P., Shen X., Advanced High-Power-Density Interior Permanent Magnet Motor for Traction Applications, IEEE Transactions on Industry Application, vol. 50, no. 1, pp. 3235–3248 (2013), DOI: 10.1109/ECCE.2013.6646754.
  • [12] Hung Vu Xuan, Modeling of exterior outer rotor permanent magnet synchronous machines with concentrated winding, Doctoral Thesis, Technische Universiteit Delft (2012).
  • [13] Yao Yuqing, Chunhua Liu, Lee C.H.T., Quantitative Comparisons of Six-Phase Outer-Rotor Permanent-Magnet Brushless Machines for Electric Vehicles, Energies, vol. 11, no. 8, 2141 (2018), DOI: 10.3390/en11082141.
  • [14] Patel V., Wang J., Wang W. et al., Six-phase fractional-slot-per-pole-per phase permanent-magnet machines with low space harmonics for electric vehicle application, IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2554–2563 (2014), DOI: 10.1109/TIA.2014.2301871.
  • [15] Gao C., Gao M., Si J. et al., A novel direct-drive permanent magnet synchronous motor with toroidal windings, Energies, vol. 12, no. 3, pp. 1–14 (2019), DOI: 10.3390/en12030432.
  • [16] Heins G., Ionel D., Thiele M., Winding factors and magnetic fields in permanent magnet brushless machines with concentrated windings and modular stator cores, IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, pp. 5048–5055 (2013), DOI: 10.1109/ECCE.2013.6647382.
  • [17] Zhu L., Jiang S., Zhu Z. et al., Analytical methods for minimizing cogging torque in permanent-magnet machines, IEEE Trans. Magn., vol. 45, no. 4, pp. 2023–2031 (2009), DOI: 10.1109/TMAG. 2008.2011363.
  • [18] Won Hoyun, Yang-Ki Hong, Minyeong Choi, Jonathan Platt, Briana Bryant, Seungdeog Choi, Shuhui Li, Hwan-Sik Yoon, Timothy A. Haskew, Jongkook Lee et al., Novel Design of Six-Phase Spoke-Type Ferrite Permanent Magnet Motor for Electric Truck Application, Energies, vol. 15, no. 6 (1997), DOI: 10.3390/en15061997.
  • [19] Potgieter J., Kamper M., Double PM-rotor, toothed, toroidal-winding wind generator: a comparison with conventional winding direct-drive PM wind generators over a wide power range, IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 2881–2891 (2016), DOI: 10.1109/TIA.2016.2536580.
  • [20] Zhu Z., Howe D., Influence of design parameters on cogging torque in permanent magnet machines, IEEE Trans. Energy Conversion, vol. 15, no. 4, pp. 407–412 (2000), DOI: 10.1109/60.900501.
  • [21] Madhavan R., Fernandes B., Axial flux segmented SRM with a higher number of rotor segments for electric vehicles, IEEE Trans. Energy Convers., vol. 28, no. 1, pp. 203–213 (2013), DOI: 10.1109/TEC.2012.2235068.
  • [22] Cheng Luming, Yi Sui, Ping Zheng, Zuosheng Yin, Chuanze Wang, Influence of Stator MMF Harmonics on the Utilization of Reluctance Torque in Six-Phase PMA-SynRM with FSCW, Energies, vol. 11, no. 1, 108 (2018), DOI: 10.3390/en11010108.
  • [23] Wang A., Jia Y., Soong W.L., Comparison of Five Topologies for an Interior Permanent-Magnet Machine for a Hybrid Electric Vehicle, in IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 3606–3609 (2011), DOI: 10.1109/TMAG.2011.2157097.
  • [24] Zhang X., Ji J., Zheng J., Zhu X., Improvement of Reluctance Torque in Fault-Tolerant Permanent-Magnet Machines with Fractional-Slot Concentrated-Windings, in IEEE Transactions on Applied Superconductivity, vol. 28, no. 3, pp. 1–5 (2018), DOI: 10.1109/TASC.2018.2808293.
  • [25] Barba P.D., Multiobjective Shape Design in Electricity and Magnetism, Springer (2010), DOI: 10.1007/978-90-481-3080-1_1.
  • [26] Dal Ö., Yildirim M., Kürüm H., Optimization of Permanent Magnet Synchronous Motor Design by Using PSO, in 4th International Conference on Power Electronics and their Applications (ICPEA), Elazig, Turkey (2019), DOI: 10.1109/ICPEA1.2019.8911192.
  • [27] Haifeng Z., Zhi D., Jinghua A.Z., Optimization Design and Analysis of Permanent magnet synchronous motor based on VC, in International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia (2017), DOI: 10.1109/ICEMS.2017.8055957.
  • [28] Hamidizadeh S., Alatawneh N., Chromik R.R., Lowther D.A., Comparisonof Different Demagnetization Models of Permanent Magnet in Machines for Eelectric Vehicle Application, IEEE Transactions on Magnetic (2015), DOI: 10.1109/TMAG.2015.2513067.
  • [29] Hwang C.-C., Lyu L.-Y., Liu C.-T., Li P.-L., Optimal Design of an SPM Motor Using Genetic Algorithms and Taguchi Method, IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 4325–4328 (2008), DOI: 10.1109/TMAG.2008.2001526.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e964f215-babe-4ff9-b201-dc3b05ed086c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.