Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 34 | 87--95
Tytuł artykułu

Inclusion relationship and Fekete-Szegö like inequalities for a subclass of meromorphic functions

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper using a differential operator, we define a new subclass of meromorphic functions. Sharp upper bounds for the functional […] in this class are obtained. An inclusion property is also given.
Wydawca

Rocznik
Tom
Strony
87--95
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Faculty of Mathematics and Computer Science, Transilvania University of Braşov 50091, Iuliu Maniu, 50, Braşov, Romania, dorinaraducanu@yahoo.com
autor
  • Department of Mathematics, Faculty of Science, Ataturk University, 25240 Erzurum – Turkey, horhan@atauni.edu.tr
autor
  • Department of Mathematics, Faculty of Science, Ataturk University, 25240 Erzurum – Turkey, edeniz36@yahoo.com
Bibliografia
  • [1] M. Darus, S. B. Joshi, N. D. Sangle, Meromorphic starlike functions with alternating and missing coeffcients, Gen. Math. 14(4)(2006), 113-126.
  • [2] M. Darus, A. Akbarally, Coefficients estimates for Ruscheweyh derivatives, Int. J. Math. Math. Sci., 36(2004), 1937-1942.
  • [3] M. Fekete, G. Szegö, Eine bemerkung über ungerade schlichte functionen, J. London Math. Soc., 8(1933), 85-89.
  • [4] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1)(1969), 8-12.
  • [5] S. R. Kulkarni, S. S. Joshi, On a subclass of meromorphic univalent functions with positive coefficients, Journ. of the Indian Acad. of Math., 24(1)(2002), 197-205.
  • [6] S. K. Lee, V. Ravichandran, S. Shamani, Coefficient bounds for meromorphic starlike and convex functions, J. Ineq. Pure Appl. Math., vol. 10, issue 3, art. 71(2009), 6 pp.
  • [7] S. S. Miller, P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289-305.
  • [8] H. Orhan, D. R aducanu, Fekete-Szegö problem for strongly starlike functions associated with generalized hypergeometric functions, Math. Comput. Modelling, 50(2009), 430-438.
  • [9] H. Orhan, E. Deniz, D. Răducanu, The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl., 59(2010), 283-295.
  • [10] N. N. Pascu, D. Răducanu, Generalized means and generalized convexity, Sem. of Geometric Function Theory, Preprint 3(1993), 95-98.
  • [11]V. Ravichandran, Y. Polatoglu, M. Bolcal, A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacettepe Journ. Math. Stat., 34(2005), 9-15.
  • [12] D. Răducanu, On a subclass of analytic functions defined by a differential operator, Bull. Transilvania Univ. of Brasov, Series III, 2(51)(2009), 223-230.
  • [13] D. Răducanu, H. Orhan, Subclasses of analytic functions defined by a generalized differential operator, Int. Journ. Math. Anal., 4(1)(2010), 1-15.
  • [14] H. Silverman, K. Suchithra, B. Adolf Stefen, A. Gangadhraran, Coefficient bounds for certain classes of meromorphic functions, J. Ineq. Appl., vol. 2008, art. ID9311981, 9 pp.
  • [15] H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variable, 44(2001), 145-163.
  • [16] B. A. Uralegaddi, A. R. Desai, Integrals of meromorphic starlike functions with positive and fixed second coefficients, Journ. of the Indian Acad. of Math., 24(1)(2002), 27-36.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e95e6e00-1150-4116-9d63-f8fa71ab5977
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.