Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | No. 64 (3) | 405--416
Tytuł artykułu

Detecting food limitation of bacterial growth during dilution experiments

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dilution method is typically applied to estimate the growth and mortality rates of phytoplankton, but it is also used to study bacterioplankton. The method comprises creating a gradient of dilutions to reduce the encounter rates between bacterivores and bacteria, thus allowing for estimations of bacterial growth and grazing pressure exerted on the bacteria. However, the manipulations involved in the method can lead to biased results. In this study, 12 dilution experiments performed in the coastal zone of the Baltic Sea were accompanied by additional measurements capable of detecting possible artefacts. Only six measurements performed during spring and summer (March–August) produced results that were free of artefacts and were statistically significant. During fall and winter (October–February) measurements were unsuccessful because of food limitation of bacterial growth during experimental incubation. Twice (in September and October) bacterial growth and grazing mortality rates were underestimated because grazing pressure was not successfully removed. The study demonstrated that 24-hour and five-day oxygen consumption measurements incorporated into dilution experiments permitted estimating the fraction of biodegradable organic matter used during incubation, and, thus, detecting the food limitation of bacterial growth.
Wydawca

Czasopismo
Rocznik
Strony
405--416
Opis fizyczny
Bibliogr. 83 poz., map., tab., wykr.
Twórcy
  • Institute of Biology and Earth Sciences, Pomeranian University, Słupsk, Poland, krychert@wp.pl
Bibliografia
  • 1. Agis, M., Granda, A., Dolan, J.R., 2007. A cautionary note: examples of possible microbial community dynamics in dilution grazing experiments. J. Exp. Mar. Biol. Ecol. 341, 176-183. http://doi.org/10.1016/j.jembe.2006.09.002
  • 2. Ammerman, J.W., Fuhrman, J.A., Hagström, ̊A., Azam, F., 1984. Bacterioplankton growth in seawater: I. Growth kinetics and cellular characteristics in seawater cultures. Mar. Ecol. Prog. Ser. 18, 31-39.
  • 3. Ameryk, A., Podgórska, B., Witek, Z., 2005. The dependence between bacterial production and environmental conditions in the Gulf of Gda ́nsk. Oceanologia 47 (1), 27-45.
  • 4. Anderson, M.R., Rivkin, R.B., 2001. Seasonal patterns in grazing mortality of bacterioplankton in polar oceans: a bipolar comparison. Aquat. Microb. Ecol. 25, 195-206.
  • 5. Andersson, A., Brugel, S., Paczkowska, J., Rowe, O.F., Figueroa, D., Kratzer, S., Legrand, C., 2018. Influence of allochthonous dissolved organic matter on pelagic basal production in a northerly estuary. Estuar. Coast. Shelf Sci. 204, 225-235. https://doi.org/10.1016/j.ecss.2018.02.032
  • 6. Blackburn, N., Hagström, ̊A., Wikner, J., Cuadros-Hansson, R., Bjørnsen, P.K., 1998. Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. Appl. Environ. Microbiol. 64, 3246-3255.
  • 7. Bochdansky, A.B., Clouse, M.A., 2015. New tracer to estimate community predation rates of phagotrophic protests. Mar. Ecol. Prog. Ser. 524, 55-69. https://doi.org/10.3354/meps11209
  • 8. Børsheim, K.Y., Bratbak, G., 1987. Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36, 171-175.
  • 9. Bouvier, T., del Giorgio, P.A., Gasol, J.M., 2007. A comparative study of cytometric characteristics of high and low nucleic acid bacterioplankton cells from different aquatic ecosystems. Environ. Microbiol. 9, 2050-2066. https://doi.org/10.1111/j.1462-2920.2007.01321.x
  • 10. Caron, D.A., 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. Environ. Microbiol. 46, 491-498.
  • 11. Caron, D.A., 2000. Symbiosis and mixotrophy among pelagic microorganisms. In: Kirchman, D.L. (Ed.), Microbial ecology of the oceans. John Wiley & Sons, New York, 495-523.
  • 12. Chróst, R.J., 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chróst, R.J. (Ed.), Microbial enzymes in aquatic environments. Springer Verlag, New York, 22-59.
  • 13. Cole, J., 1999. Aquatic microbiology for ecosystem scientists: new and recycled paradigms in ecological microbiology. Ecosystems 2, 215-225.
  • 14. del Giorgio, P.A., Cole, J.J., 2000. Bacterial energetics and growth efficiency. In: Kirchman, D.L. (Ed.), Microbial ecology of the oceans. John Wiley & Sons, New York, 289-325.
  • 15. del Giorgio, P.A., Duarte, C.M., 2002. Respiration in the open ocean. Nature 420, 379-384. http://doi.org/10.1038/nature01165
  • 16. Dolan, J.R., Gallegos, Ch.L., Moigis, A., 2000. Dilution effects on microplankton in dilution grazing experiments. Mar. Ecol. Prog. Ser. 200, 127-139.
  • 17. Dolan, J.R., McKeon, K., 2005. The reliability of grazing rate estimates from dilution experiments: have we over-estimated rates of organic carbon consumption by microzooplankton? Ocean. Sci. 1, 1-7. http://doi.org/10.5194/os-1-1-2005
  • 18. Ducklow, H., 2000. Bacterial production and biomass in the oceans. In: Kirchman, D.L. (Ed.), Microbial ecology of the oceans. John Wiley & Sons, New York, 85-120.
  • 19. Elser, J.J., Frees, D.L., 1995. Microconsumer grazing and sources of limiting nutrients for phytoplankton growth: application and complications of a nutrient-depletion/dilution-gradient technique. Limnol. Oceanogr. 40, 1-16.
  • 20. Epstein, S.S., Shiaris, M.P., 1992. Size selective grazing of coastal bacterioplankton by natural assemblages of pigmented flagellates, colorless flagellates, and ciliates. Microb. Ecol. 23, 211-225.
  • 21. Evans, C., Archer, S.D., Jacquet, S., Wilson, W.H., 2003. Direct estimates of the contribution of viral lysis and microplankton grazing to the decline of a Micromonas spp. population. Aquat. Microb. Ecol. 30, 207-219. https://doi.org/10.3354/ame030207
  • 22. Evans, G.T., Paranjape, M.A., 1992. Precision of estimates of phytoplankton growth and microzooplankton grazing when the functional response of grazers
  • 23. may be nonlinear. Mar. Ecol. Prog. Ser. 80, 285-290.
  • 24. Ferguson, R.L., Buckley, E.N., Palumbo, A.V., 1984. Response of marine bacterioplankton to differential filtration and confinement. Appl. Environ. Microbiol. 47, 49-55.
  • 25. Gallegos, Ch.L., 1989. Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: nonlinear feeding kinetics. Mar. Ecol. Prog. Ser. 57, 23-33.
  • 26. Gasol, J.M., del Giorgio, P.A., Massana, R., Duarte, C.M., 1995. Active versus inactive bacteria: size-dependence in a coastal marine community. Mar. Ecol. Prog. Ser. 128, 91-97.
  • 27. Gifford, D.J., 1988. Impact of grazing by microzooplankton in the Northwest Arm of Halifax Harbour, Nova Scotia. Mar. Ecol. Prog. Ser. 47, 249-258.
  • 28. Gonzalez, J.M., Sherr, E.B., Sherr, B.F., 1993. Differential feeding by marine flagellates on growing versus starving and on motile versus non-motile bacterial prey. Mar. Ecol. Prog. Ser. 102, 257-267.
  • 29. Griffith, P.C., Douglas, D.J., Wainright, S.C., 1990. Metabolic activity of size-fractionated microbial plankton in estuarine, nearshore, and continental shelf waters of Georgia. Mar. Ecol. Prog. Ser. 59, 263-270.
  • 30. Güde, H., 1986. Loss processes influencing growth of planktonic bacterial populations in Lake Constance. J. Plankton Res. 8, 795-810.
  • 31. Hahn, M.W., Höfle, M.G., 2001. Grazing of protozoa and its effect on population of aquatic bacteria. FEMS Microbiol. Ecol. 35, 113-121. https://doi.org/10.1111/j.1574-6941.2001.tb00794.x
  • 32. Haller, C.M., Rolleke, S., Vybiral, D., Witte, A., Velimirov, B., 1999. Investigation of 0.2 μm filterable bacteria from the Western Mediterranean Sea using a molecular approach: dominance of potential starvation forms. FEMS Microbiol. Ecol. 31, 153-161.
  • 33. Hobbie, J.E., Daley, R.J., Jasper, S., 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225-1228.
  • 34. Jochem, F.J., Lavrentyev, P.J., First, M.R., 2004. Growth and grazing rates of bacteria groups with different apparent DNA content in the Gulf of Mexico. Mar. Biol. 145, 1213-1225. https://doi.org/10.1007/s00227-004-1406-7
  • 35. Jost, G., Ballin, G., 1984. Seasonal changes in bacteriological parameters at a station in the chain of shallow waters (boddens), south of the Darss-Zingst Peninsula (South Baltic). Limnologica 15, 597-603.
  • 36. Jürgens, K., Güde, H., 1994. The potential importance of grazing-resistant bacteria in planktonic systems. Mar. Ecol. Prog. Ser. 112, 169-188.
  • 37. Kimmance, S.A., Wilson, W.H., Archer, S.D., 2007. Modified dilution technique to estimate viral versus grazing mortality of phytoplankton: limitations associated with method sensitivity in natural waters. Aquat. Microb. Ecol. 49, 207-222. https://doi.org/10.3354/ame01136
  • 38. Koton-Czarnecka, M., Chróst, R.J., 2003. Protozoans prefer large and metabolically active bacteria. Pol. J. Environ. Stud. 12, 325-334.
  • 39. Kuparinen, J., 1988. Development of bacterioplankton during winter and early spring at the entrance to the Gulf of Finland, Baltic Sea. Verh. Internat. Verein. Limnol. 23, 1869-1878.
  • 40. Kuuppo, P., Samuelsson, K., Lignell, R., Seppälä, J., Tamminen, T.,Andersson, A., 2003. Fate of increased production in late-summer plankton communities due to nutrient enrichment of the Baltic Proper. Aquat. Microb. Ecol. 32, 47-60. https://doi.org/10.3354/ame032047
  • 41. Kuuppo-Leinikki, P., 1990. Protozoan grazing on planktonic bacteria and its impact on bacterial population. Mar. Ecol. Prog. Ser. 63, 227-238.
  • 42. Landry, M.R., 1993. Estimating rates of growth and grazing mortality of phytoplankton by the dilution method. In: Kemp, P.F.,Sherr, B.F., Sherr, E.B., Cole, J.J. (Eds.), Handbook of methods in aquatic microbial ecology. Levis Publ., Boca Raton, 715-722.
  • 43. Landry, M.R., Calbet, A., 2005. Reality checks on microbial food web interactions in dilution experiments: responses to the comments of Dolan and McKeon. Ocean. Sci. 1, 39-44. https://doi.org/10.5194/os-1-39-2005
  • 44. Landry, M.R., Hassett, R.P., 1982. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67, 283-288.
  • 45. Landry, M.R., Kirshtein, J., Constantinou, J., 1995. A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific. Mar. Ecol. Prog. Ser. 120, 53-63.
  • 46. Latasa, M., 2014. Comment: A potential bias in the databases of phytoplankton growth and microzooplankton grazing rates because of the improper formulation of the null hypothesis in dilution experiments. Limnol. Oceanogr. 59, 1092-1094. https://doi.org/10.4319/lo.2014.59.3.1092
  • 47. Lebaron, P., Servais, P., Troussellier, M., Courties, C., Vives-Rego, J., Muyzer, G., Bernard, L., Guindulain, T., Schäfer, H., Stackebrandt, E., 1999. Changes in bacterial community structure in seawater mesocosms differing in their nutrient status. Aquat. Microb. Ecol. 19, 255-267.
  • 48. Li, W.K.W., Dickie, P.M., 1985. Growth of bacteria in seawater filtered through 0.2 μm Nucleopore membranes: implications for dilution experiments. Mar. Ecol. Prog. Ser. 26, 245-252.
  • 49. Massana, R., Pedrós-Alió, C., Casamayor, E.O., Gasol, J.M., 2001. Changes in marine bacterioplankton phylogenetic composition during incubations designed to measure biogeochemically significant parameters. Limnol. Oceanogr. 46, 1181-1188. https://doi.org/10.4319/lo.2001.46.5.1181
  • 50. Matthäus, W., Nehring, D., Feistel, R., Nausch, G., Mohrholz, V., Lass, H.-U., 2008. The inflow of highly saline water in the Baltic Sea. In: Feistel, R., Nausch, G., Wasmund, N. (Eds.), State and Evolution of the Baltic Sea. Wiley & Sons, Hoboken, 265-309.
  • 51. Miki, T., Yamamura, N., 2005. Theoretical model of interactions between particle-associated and free-living bacteria to predict functional composition and succession in bacterial communities. Aquat. Microb. Ecol. 39, 35-46. https://doi.org/10.3354/ame039035
  • 52. Morán, X.A.G., Bode, A., Suárez, L.Á., Nogueira, E., 2007. Assessing the relevance of nucleic acid content as an indicator of marine bacterial activity. Aquat. Microb. Ecol. 46, 141-152. https://doi.org/10.3354/ame046141
  • 53. Murrell, M.C., Hollibaugh, J.T., 1998. Microzooplankton grazing in northern San Francisco Bay measured by the dilution method. Aquat. Microb. Ecol. 15, 53-63.
  • 54. Nagata, T., Kirchman, D.L., 1990. Filtration-induced release of dissolved free amino acids: application to cultures of marine protozoa. Mar. Ecol. Prog. Ser. 68, 1-5.
  • 55. Pernthaler, J., 2005. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 3, 1-10. https://doi.org/10.1038/nrmicro1180
  • 56. Pinhassi, J., Azam, F., Hemphälä, J., Long, R.A., Martinez, J., Zweifel, U.L., Hagström, ̊A., 1999. Coupling between bacterio-plankton species composition, population dynamics, and organic matter degradation. Aquat. Microb. Ecol. 17, 13-26.
  • 57. Pinhassi, J., Hagström, Å., 2000. Seasonal succession in marine bacterioplankton. Aquat. Microb. Ecol. 21, 245-256.
  • 58. Posch, T., Loferer-Krößbacher, M., Gao, G., Alfreider, A., Pernthaler, J., Psenner, R., 2001. Precision of bacterioplankton: a comparison of two fluorescent dyes, and of allometric and linear volume-to-carbon conversion factors. Aquat. Microb. Ecol. 25, 55-63. https://doi.org/10.3354/ame025055
  • 59. Pree, B., Kuhlisch, C., Pohnert, G., Sazhin, A.F., Jakobsen, H.H., Paulsen, M.L., Frischer, M.E., Stoecker, D., Nejstgaard, J.C., Larsen, A., 2016. A simple adjustment to test reliability of bacterivory rates derived from the dilution method. Limnol. Oceanogr.-Methods 14, 114-123. https://doi.org/10.1002/lom3.10076
  • 60. Preen, K., Kirchman, D.L., 2004. Microbial respiration and production in the Delaware Estuary. Aquat. Microb. Ecol. 37, 109-119. https://doi.org/10.3354/ame037109
  • 61. Renk, H., Ochocki, S., 1999. Primary production in the southern Baltic Sea determined from photosynthetic light curves. Bull. Sea Fish. Inst. Gdynia 148, 23-40.
  • 62. Robinson, C., Williams, P., 2005. Respiration and its measurement in surface marine waters. In: del Giorgio, P.A., Williams, P.J. le B. (Eds.), Respiration in aquatic ecosystems. Oxford University Press, Oxford, New York, 147-180.
  • 63. Rychert, K., 2006. Nanoflagellates in the Gda ́nsk Basin: coexistence between forms belonging to different trophic types. Oceanologia 48 (2), 323-330.
  • 64. Rychert, K., 2016. Growth rates of common pelagic ciliates in a highly eutrophic lake measured with a modified dilution method. Oceanol. Hydrobiol. Stud. 45, 216-229. https://doi.org/10.1515/ohs-2016-0020
  • 65. Rychert, K., Spich, K., Laskus, K., P ̨aczkowska, M., Wielgat-Rychert, M., Sojda, G., 2013. Composition of protozoan communities at two stations in the coastal zone of the southern Baltic Sea. Oceanol. Hydrobiol. Stud. 42, 268-276. https://doi.org/10.2478/s13545-013-0083-x
  • 66. Sakka, A., Legendre, L., Gosselin, M., Delesalle, B., 2000. Structure of the oligotrophic planktonic food web under low grazing of heterotrophic bacteria: Takapoto Atoll, French. Mar. Ecol. Prog. Ser. 197, 1-17.
  • 67. Sherr, E.B., Sherr, B.F., 2002. Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek 81, 293-308.
  • 68. Sherr, B.F., Sherr, E.B., McDaniel, J., 1992. Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages. Appl. Environ. Microbiol. 58, 2381-2385.
  • 69. Shinada, A., Ikeda, T., Ban, S., Tsuda, A., 2000. Seasonal changes in micro-zooplankton grazing on phytoplankton assemblages in the Oyashio region, western subarctic Pacific. Plankton Biol. Ecol. 47, 85-92.
  • 70. Šimek, K., Chrzanowski, T.H., 1992. Direct and indirect evidence of size-selective grazing on pelagic bacteria by fresh-water nanoflagellates. Appl. Environ. Microbiol. 58, 3715-3720.
  • 71. Sommer, U., Berninger, U.G., Böttger-Schnack, R., Cornils, A., Hagen, W., Hansen, T., Al-Najjar, T., Post, A.F., Schnack--Schiel, S.B., Stibor, H., Stübing, D., Wickham, S., 2002. Grazing during early spring in the Gulf of Aqaba and the northern Red Sea. Mar. Ecol. Prog. Ser. 239, 251-261.
  • 72. Søndergaard, M., Danielsen, M., 2001. Active bacteria (CTC+) in temperate lakes: temporal and cross-system variations. J. Plankton Res. 23, 1195-1206. https://doi.org/10.1093/plankt/23.11.1195
  • 73. Stevenson, L.H., 1978. A case for bacterial dormancy in aquatic systems. Microb. Ecol. 4, 127-133.
  • 74. Stocker, R., 2012. Marine microbes see a sea of gradients. Science 338, 628-633. https://doi.org/10.1126/science.1208929
  • 75. Taira, Y., Uchimiya, M., Kudo, I., 2009. Simultaneous estimation of viral lysis and protozoan grazing on bacterial mortality using a modified virus-dilution method. Mar. Ecol. Prog. Ser. 379, 23-32. https://doi.org/10.3354/meps07820
  • 76. Tett, P., Wilson, H., 2000. From biogeochemical to ecological models of marine microplankton. J. Mar. Syst. 25, 431-446.
  • 77. Våge, S., Bratbak, G., Egge, J., Heldal, M., Larsen, A., Norland, S., Paulsen, M.L., Pree, B., Sandaa, R.-A., Skjoldal, E.F., Tsagaraki, T.M., Øvreås, L., Thingstad, T.F., 2018. Simple models combining competition, defence and resource availability have broad implications in pelagic microbial food webs. Ecol. Lett. 21, 1440-1452. https://doi.org/10.1111/ele.13122
  • 78. Vaqué, D., Casamayor, E.O., Gasol, J.M., 2001. Dynamics of whole community bacterial production and grazing losses in seawater incubations as related to the changes in the proportions of bacteria with different DNA content. Aquat. Microb. Ecol. 25, 163-177.
  • 79. Williams, P.J.leB., 2000. Heterotrophic bacteria and the dynamics of dissolved organic matter. In: Kirchman, D.L. (Ed.), Microbial ecology of the oceans. WileyLiss, New York, 153-200.
  • 80. Witek, Z., Drgas, A., Ameryk, A., Ochocki, S., 2001. Production and mineralization of organic matter in the Pomeranian Bay. Bull. Sea Fish. Inst. Gdynia 3, 49-69.
  • 81. Witek, Z., Ochocki, S., Maciejowska, M., Pastuszak, M., Nakonieczny, J., Podgórska, B., Kownacka, J.M., Mackiewicz, T., Wrzesi ́nska-Kwiecie ́n, M., 1997. Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gda ́nsk (southern Baltic). Mar. Ecol. Prog. Ser. 148, 169-186.
  • 82. Zoccarato, L., Malusà, A., Fonda Umani, S., 2016. Major contribution of prokaryotes to carbon fluxes in the pelagic microbial food webs of the Mediterranean Sea. Adv. Oceanogr. Limnol. 7, 51-66. https://doi.org/10.4081/aiol.2016.5799
  • 83. Zweifel, U.L., Norrman, B., Hagström, ̊A., 1993. Consumption of dissolved organic carbon by marine bacteria and demand for in-organic nutrients. Mar. Ecol. Prog. Ser. 101, 23-32.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e9009b15-730a-4da0-ba08-58829f0b339a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.