Czasopismo
2014
|
Vol. 32, No. 4
|
555--564
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Manganese dioxide (MnO2) films with different nanostructures were deposited on indium tin oxide (ITO) glasses by using chemical bath deposition (CBD). Deposition temperature and time were varied from 60 °C to 90 °C and from 2 h to 72 h, respectively. The samples have been characterized using an X-ray diffraction (XRD), field emission scanning electron microscope (SEM) and an electrochemical workstation. The films deposited at 60 °C for 8 h showed that obtained nanoflowers had an amorphous nature, while those deposited at higher temperatures of 70, 80 and 90 °C showed a well-developed nanowire and nanorod morphology. However, those which were deposited at 60 °C, showed the best electrochemical properties, including a higher specific capacitance, good rate of performance and a cycling stability (93 % loss of the initial value after 10,000 cycles).
Czasopismo
Rocznik
Tom
Strony
555--564
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
- Institute of Nanoscience and Nanotechnology, Central China Normal University, Wuhan 430079, China
autor
- Institute of Nanoscience and Nanotechnology, Central China Normal University, Wuhan 430079, China, ywtang@phy.ccnu.edu.cn
Bibliografia
- [1] AI Z., ZHANG L., KONG F., LIU H., XING W., QIU J., Mater. Chem. Phys., 111 (2008), 162.
- [2] LIU Y., ZHANG M., ZHANG J., QIAN Y., J. Solid State Chem., 179 (2006), 1757.
- [3] XIAO W., XIA H., FUH J.Y.H., LU L., J. Power Sources, 193 (2009), 935.
- [4] WEI L., LI C., CHU H., LI Y., Dalton T., 40 (2011), 2332.
- [5] LI J., WANG N., ZHAO Y., DING Y., GUAN L., Electrochem. Commun., 13 (2011), 698.
- [6] HOU Y., CHENG Y., HOBSON T., LIU J., Nano Lett., 10 (2010), 2727.
- [7] SI P., CHEN P., KIM D.H., J. Mater. Chem. B, 1 (2013), 2696.
- [8] YANG G., WANG B., GUO W., BU Z., MIAO C., XUE T., LI H., Mater. Res. Bull, 47 (2012), 3120.
- [9] DING K.Q., Int. J. Electrochem. Sc., 5 (2010), 72.
- [10] KIM S.H., KIM Y.I., PARK J.H., KO J.M., Int. J. Electrochem. Sc., 4 (2009), 1489.
- [11] JAYALAKSHMI M., BALASUBRAMANIAN K., Int. J. Electrochem. Sc., 3 (2008), 1196.
- [12] ADELKHANI H., GHAEMI M., JAFARI S.M., J. Power Sources, 163 (2007), 1091.
- [13] ADELKHANI H., J. Electrochem. Soc., 156 (2009), 791.
- [14] GHAEMI M., BIGLARI Z., BINDER L., J. Power Sources, 102 (2001), 29.
- [15] KATHALINGAM A., AMBIKA N., KIM M.R., ELANCHEZHIYAN J., CHAE Y.S., RHEE J.K., Mater. Sci.-Poland, 28 (2010), 513.
- [16] DUBAL D.P., DHAWALE D.S., GUJAR T.P., LOKHANDE C.D., Appl. Surf. Sci., 257 (2011), 3378.
- [17] PRASAD K.R., MIURA N., Electrochem. Commun., 6 (2004), 1004.
- [18] WU M., SNOOK G.A., CHEN G.Z., FRAY D.J., Electrochem.Commun., 6 (2004), 499.
- [19] BISWAS S., DRZAL L.T., Chem. Mater., 22 (2010), 5667.
- [20] XIONG W., LIU M.X., GAN L.H., LV Y.K., LI Y., YANG L., J. Power Sources., 196 (2011), 10461.
- [21] WANG D.W., LI F., CHENG H.M., J. Phys. Chem. B, 110 (2006), 8570.
- [22] ZHANG K., ZHANG L.L., ZHAO X.S., WU J., Chem. Mater., 22 (2010), 1392.
- [23] XU C.H., SUN J., GAO L., J. Mater. Chem., 21 (2011), 11253.
- [24] DUBAL D.P., KIM W.B., LOKHANDE C.D., J. Phys. Chem. Solids, 73 (2012), 18.
- [25] GUJAR T.P., SHINDE V.R., LOKHANDE C.D., HAN S.H., J. Power Sources, 161 (2006), 1479.
- [26] BI R.R., WU X.L., CAO F.F., JIANG L.Y., GUO Y.G., WAN L.J., J. Phys. Chem., 114 (2010), 2448.
- [27] LI J., LIU E.H., LI W., MENG X.Y., TAN S.T., J. Alloy. Compd., 478 (2009), 371.
- [28] SIMON P., GOGOTSI Y., Nat. Mater., 7 (2008), 845.
- [29] QU D.Y., J. Power Sources, 102 (2001), 270.
- [30] WU M.S., LEE J.T., WANG Y.Y., WAN C.C., J. Phys. Chem., 108 (2004), 16331.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e8f1f9cd-ca0d-4581-b5dd-9daca92234fd