Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 30, nr 1 | 49--61
Tytuł artykułu

Surface water contamination by mining wastes: Case of the Sidi Kambar region (Skikda North-East Algeria)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this work is to assess the contamination of the Essouk stream, under acid drainage from the Sidi Kambar mine (southwest of Skikda, Algeria), which has been widely exploited during the previous decades. The methodology was conducted to control the current state of water chemistry, its evolution in space and time according to the variation of water physicochemical parameters and the content of trace metals (Pb, Fe, and Zn). In general, Essouk stream are highly sulphated (reached 598.56 mg/L) and have an elevated salinity, resulting in a high conductivity (1925 μS/cm) and presented a low pH (3.01). In addition, Fe, Pb and Zn contents reached 5.17 mg/L, 2.05 mg/L and 4.05 mg/L, respectively. Such results were linked to the bedrock of Sidi Kambar that is composed of galena, pyrite and sphalerite.
Wydawca

Rocznik
Strony
49--61
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Laboratory of Research in Biodiversity Interaction, Ecosystem and Biotechnology (LRIBEB), Department of Natural and Life Sciences, Faculty of Sciences, University 20 August, 1955, P.O. Box 26, 21000 Skikda, Algeria, phone: +213657643755, f.fekrache@univ-skikda.dz
  • Department of Natural and Life Sciences, Faculty of Sciences, University 20 August 1955, P.O. Box 26, 21000 Skikda, Algeria, k.boudeffa@univ-skikda.dz
Bibliografia
  • [1] Qiao D, Wang G, Li X, Wang S, Zhao Y. Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China. Chemosphere. 2020;248:15988:1-13. DOI: 10.1016/j.chemosphere.2020.125988.
  • [2] Isvoran A, Roman Dl, Dascalu D, Vlad-Oros B, Ciorsac A, Pitulice L, et al. Human health effects of heavy metal pollution in the cross-border area of Romania and Serbia: a review. Ecol. Chem. Eng S. 2021;28(3):365-88. DOI: 10.2478/eces-2021-0025.
  • [3] Nornade C, Scott GR, Grosbois C, Bril H. Comparison between acid rock drainage and acid mine drainage: natural versus anthropogenic alteration of sulphide ore body. Extended summary published. 32nd Int Geological Congress. Florence; 2004. Available from: https://www.worldcat.org/fr/title/generalproceedings-32nd-international-geological-congress-florence-italy-august-20-28-2004/oclc/466168273.
  • [4] Aristide Yapi YH, Kouyaté A, Irié M, Bi G, Dongui BK, Trokourey A. Quantitative evaluation of the health risks and estimation of the health impact related to the ingestion of metallic pollution of drinking water in a rural environment (Hire, Ivory Coast). Int J Adv Res. 2019;7(11):100-10. DOI: 10.21474/IJAR01/9981.
  • [5] Alegbe MJ, Ayanda OS, Ndungu P, Nechaev A, Fatoba OO, Petrik LF. Physicochemical characteristics of acid mine drainage, simultaneous remediation and use as feedstock for value added products. J Environ Chem Eng. 2019;7:1-12. DOI: 10.1016/j.jece.2019.103097.
  • [6] Lakrim M, El Aroussi O, Mesrar L, Jabrane R. Impact study of mining waste from the Nador iron mine on the environment (North-East Morocco). Sci Technical Rev. 2011:78-94. Available from: https://www.asjp.cerist.dz/en/downArticle/243/10/18/37459.
  • [7] Boutaleb A, Seklaoui M, Hadj Arab L, Issaad M, Alligui F, Berdous D, et al. Environmental Impacts of (Zn-Pb-Fe and Cu) Ore Deposits Mining and Associated Wastes: a Case of the Northeastern Algeria. Conference: 2015; 5AAMRC, At: Manilla Philippines. Available from: https://www.researchgate.net/profile/Boutaleb-Abdelhak/publication/301341598.
  • [8] Boutaleb A, Amraoui S, Berdous D, Alligui F, Issaad M, Mahfoud Z, et al. State of soil and water contaminated by metallic trace elements from two abandoned mines, case of the Pb-Zn deposits of Boudoukha and Sidi Kambar (NE Algeria). 3rd Int Seminar Mineral Industry Environ. 2017. Available from: https://www.researchgate.net/publication/320738983.
  • [9] Khelfaoui M, Medjram MS, Kabir A, Zouied D, Mehri K, Chikha O, et al. Chemical and mineralogical characterization of weathering products in mine wastes, soil, and sediment from the abandoned Pb/Zn mine in Skikda, Algeria. Environ Earth Sci. 2020;79:293-308. DOI: 10.1007/s12665-020-09043-x.
  • [10] Khelfaoui M, Benaissa A, Kherraf S, Medjram MS, Bouras I, Mehri K. Assessment of groundwater and surface water pollution by hazardous metals using multivariate analysis and metal pollution index around the old Sidi Kambar Mine. NE Algeria. Pollution. 2022;8(3):889-903. DOI: 10.22059/POLL.2022.335695.1294.
  • [11] Boukhalfa C, Chaguer C. Characterisation of sediments polluted by acid mine drainage in the northeast of Algeria. Int J Sediment Res. 2012;27(3):402-7. DOI: 10.1007/s12665-020-09043-x.
  • [12] Khelfaoui M, Medjram MS, Kabir A, Zouied D, Mehri K, Chikha O, et al. Chemical and mineralogical characterization of weathering products in mine wastes, soil, and sediment from the abandoned Pb/Zn mine in Skikda, Algeria. Environ Earth Sci. 2020;79:293. DOI: 10.1007/s12665-020-09043-x.
  • [13] Dupuis-Tate MF, Fischesser B. Rivers and Landscapes. Paris: Editions of the Martiniere; 2003, p. 343. ISBN: 2732428760.
  • [14] Issaad M, Boutaleb A, Kolli O, Edahbi M, Benzaazoua M, Hakkou R. Environmental characterization of mine waste at the Pb-Zn Sidi Kambar abandoned mine (NE Algeria), Rendiconti Lincei. Scienze Fisiche Naturali. 2019;30:427-41. DOI: 10.1007/s12210-019-00806-8.
  • [15] Oumedjbeur A. Evolution of the physicochemical quality of water in the catchment area of the Guénitra dam. PhD thesis. University of Savoie; 1986. Available from: https://www.sudoc.fr/043545440.
  • [16] Zouhri L, El Amari K, Marier D, Benkaddour A, Mohamed H. Bacteriological and geochemical features of the groundwater resources: Kettara abandoned mine (Morocco). Environ Pollut. 2019;252:1698-708. DOI: 10.1016/j.envpol.2019.06.098.
  • [17] El-Tohamy W, Abdel-Baki S, Abdel-Aziz N, Khidr AA. Evaluation of spatial and temporal variations of surface water quality in the Nile River Damietta Branch. Ecol Chem Eng S. 2018;25(4):569-80. DOI: 10.1515/eces-2018-0038.
  • [18] Gaikwad RW, Gupta DV. Review on removal of heavy metals from acid mine drainage. Appl Ecol Environ Res. 2008;6(3):81-98. Available from: https://www.aloki.hu/pdf/0603_081098.pdf.
  • [19] Ezeribe AI, Oshieke KC, Jauro A. Physicochemical properties of well water samples from some villages in Nigeria with cases of stained and mottle teeth. Sci World J. 2012.7(1):1-3. Available from: https://www.ajol.info/index.php/swj/article/view/82251.
  • [20] Cánovas CR, Olías M, Nieto JM, Sarmiento AM, Cerón JC. Hydrogeochemical characteristics of the Tinto and Odiel Rivers (SW Spain). Factors controlling metal contents. Sci Total Environ. 2007;373:363-82. DOI: 10.1016/j.scitotenv.2006.11.022.
  • [21] Monjerezi M, Vogt RD, Gebru AG, Saka JDK, Aagaard P. Minor element geochemistry of groundwater from an area with prevailing saline groundwater in Chikhwawa, lower Shire valley (Malawi). Phys Chem Earth. 2012:52-6. DOI: 10.1016/j.pce.2012.08.011.
  • [22] Gao Z, Lin Z, Niu F, Luo J, Liu MA, Yin G. Hydrochemistry and controlling mechanism of lakes in permafrost regions along the Qinghai-Tibet Engineering Corridor, China. Geomorphology. 2017;297:159-69. DOI: 10.1016/j.geomorph.2017.09.020.
  • [23] WHO, Guidelines for drinking-water quality. WHO Chronicle, 4th Edition World Health Organization. Geneva: Switzerland; 2017. ISBN: 9789241549950. Available from: https://www.who.int/publications/i/item/9789241549950.
  • [24] Sajitha V, Smitha Asok V. Study of physicochemical parameters and pond water quality assessment by using water quality index at Athiyannoor Panchayath, Kerala, India. Emergent Life Sci Res. 2016;2(1):46-51. Available from: https://www.emergentresearch.org/uploads/38/1789_pdf.pdf.
  • [25] Luptáková A, Mačingová E, Kotuličová I, Rudzanová D. Sulphates Removal from Acid Mine Drainage. IOP Conf Ser.: Earth Environ Sci. 2016;44:052040. DOI: 10.1088/1755-1315/44/5/052040.
  • [26] Doveri M, Natali S, Franceschi L, Menichini M, Trifiro S, Giannecchini R. Carbonate aquifers threatened by legacy mining: hydrodynamics, hydrochemistry, and water isotopes integrated approach for spring water management. J Hydrol. 2021;125850:1-18. DOI: 10.1016/j.jhydrol.2020.125850.
  • [27] Gilchrist S, Gates A, Szabo Z, Lamothe PI. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York. Environ Geology. 2009;57:397-409. DOI: 10.1007/s00254-008-1310-4.
  • [28] Callender E. Heavy Metals in the Environment-Historical Trends. US Geological Survey, Westerly, RI, USA. 2003:67-100. Available from:https://www.docenti.unina.it/webdocenti-be/allegati/materialedidattico/549515.
  • [29] Baize D. Total levels of metallic trace elements in soils (France). Editions Quae; 1997:408 pp. ISBN: 9782738007476. Available from: https://letapelitteraire.fr/livre/612352-teneurs-totales-en-elements-tracesmetalliques--denis-baize-quae.
  • [30] Korça B, Demaku S. Evaluating the presence of heavy metals in the vicinity of an industrial complex. Polish J Environ Stud. 2020;29(5):3643-9. DOI: 10.15244/pjoes/116071.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e8da231f-0637-4e68-91f0-1203dc28580a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.