Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | Vol. 70, no 6 | 2917--2932
Tytuł artykułu

Radial basis function neural network and salp swarm algorithm for paddy leaf diseases classification in Thanjavur, Tamilnadu geographical region

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Farming is an essential sustenance for the progressive population. The development of our country depends on the farmers. Plants endure by many diseases due to environmental factors. So, the farmers need to detect plant diseases at an early stage for appreciable yield. In the beginning, the observing and examining plant disease are examined physically by the expertise in the farming field, which requires a considerable measure of work/ and requires over the top handling time. Now, machine learning concepts eliminate conventional protruding and time-consuming techniques. This paper focuses on a novel method for detecting and identifying paddy leaf diseases at the early stages in Thanjavur region using radial basis function neural network (RBFNN) classifier. Further, it is optimized with salp swarm algorithm (SSA) technique. The proposed method utilizes the data from the TNAU agritech portal, IRRI knowledge bank, UCI machine learning repository databases, which have healthy and diseased images. This work illustrates four categories (Bacterial Blast, Bacterial Blight, Leaf Tungro and Brown Spot) of infected paddy images along with the normal set of images. Initially the preprocessing is performed for the acquired images then K-means segmentation algorithm segregates the image. Gray level co-occurrence matrix extracts the Texture features from the segmented image and the RBFNN classifier performs the disease classification and improves the detection accuracy by optimizing the data using SSA. The investigational results of the proposed methodology exhibit the performance in terms of accuracy of disease detection is 98.47%. However, radial basis function neural network (RBFNN) achieves the diseases detection accuracy of 97.85% and support-vector machine (SVM) classifier achieves a disease detection accuracy of 97.07%. This paper proposes a method of paddy leaf disease recognition and classification using RBFNN and salp swarm algorithm. It also suggests and identifies an image analysis by framing a set of conditions for disease affected plants. The results show that the most satisfactory outcome can be gained to verify the yield of proposed methods with least effort.
Wydawca

Czasopismo
Rocznik
Strony
2917--2932
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
  • Department of ECE, Srinivasan Ramanujan Centre, SASTRA Deemed University, Kumbakonam, India, mcvsudha@src.sastra.edu
Bibliografia
  • 1. Abusnaina AA, Ahmad S, Jarrar R, Mafarja M (2018) Training neural networks using salp swarm algorithm for pattern classification. In: Proceedings of the 2nd international conference on future networks and distributed systems, pp 1-6, https://doi.org/10.1145/3231053.3231070·
  • 2. Aimi Salihah AN, Yusoff M, Zeehaida M (2013) Colour image segmentation approach for detection of malaria parasites using various colour models and k-means clustering. WSEAS Trans Biol Biomed 10(1):41–55
  • 3. Al Bashish D, Braik M, Bani-Ahmad S (2011) Detection and classification of leaf diseases using K-means-based segmentation and. Inf Technol J 10(2):267–275
  • 4. Ambika R, Biradar L (2021) A robust low frequency integer wavelet transform based fractal encryption algorithm for image steganography. Int J Adv Intell Paradigms 19(3–4):342–356
  • 5. Arivazhagan S, Shebiah RN, Ananthi S, Varthini SV (2013) Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric Eng Int CIGR J 15(1):211–7
  • 6. Camargo A, Smith JS (2009) An image processing based algorithm to automatically identify plant disease visual symptoms. Bio Syst Eng 102(1):9–21
  • 7. Dharani T, Aroquiaraj IL (2014) Content based image retrieval system with modified knn algorithm. Int J Innov Sci Eng Res (IJISER), 1(1)
  • 8. Diptesh M, Dipak Kumar K, Aruna C, Dwijesh DM. An Integrated digital image analysis system for detection, recognition and diagnosis of disease in wheat leaves. Research Gate 2015
  • 9. Ghaiwat Savita N, Arora P (2014) Detection and classification of plant leaf diseases using image processing techniques, a review. Int J Recent Adv Eng Technol 2(3):2347–2812
  • 10. Gori M, Tesi A (1992) On the problem of local minima in backpropagation. IEEE Trans Pattern Anal Mach Intell 14(1):76–86
  • 11. Jayamala K, Raj KP (2012) Advances in Image Processing for detection of plant diseases. JABAR 2(2):135–141
  • 12. Kiran RG, Gawndw U (2014) An overview of the research on plant leaves disease detection using image processing techniques. Int J Pure Appl Math 16:10–16
  • 13. Kurniawati NN, Abdullah SNHS, Abdullah S, Abdullah S (2009) Investigation on image processing techniques for diagnosing paddy diseases. In: 2009 international conference of soft computing and pattern recognition. IEEE, 2009
  • 14. Megha S, Niveditha CR, SowmyaShree N, Vidhya K (2017) Image processing system for plant disease identification by using FCM clustering technique. Int J Adv Res Ideas Innov Technol 3(2): 445–449
  • 15. Meunkaewjinda A, et al. (2008) Grape leaf disease detection from color imagery using hybrid intelligent system. In: 2008 5th international conference on electrical engineering/electronics, computer, telecommunications and information technology. vol 1. IEEE
  • 16. Mrunalini RB, Deshmukh Prashant R (2011) An application of K-Means Clustering and artificial intelligence in pattern recognition for crop diseases. Int Conf AdvInf Technol 20:134–138
  • 17. Mukherjee M, Pal T, Samant D (2012) Damaged paddy leaf detection using image processing. J Glob Res Comput Sci 3(10):07–10
  • 18. Neha M, Priyanka BR, Sowmya GH, Pooja R (2019) Paddy leaf disease detection using image processing and machine learning. Int J Innov Res Electr Electron Instrum Control Eng 7(2):97–99
  • 19. Rangayya R, Virupakshappa V, Patil N (2021) An enhanced segmentation technique and improved support vector machine classifier for facial image recognition. Int J Intell Comput Cybernet
  • 20. Sandesh R, Kartik I (2017) Review on leaf disease detection using image processing techniques. Int Res J Eng Technol (IRJET) 04(04):2044–2047
  • 21. Singh V, Misra AK (2017) Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf Process Agric 4:41–49
  • 22. Surendrababu V, Sumathi P, Umapathy E (2014) Detection of rice leaf diseases using chaos and fractal dimension in image processing. Int J Comput Sci Eng (IJCSE) 6:69–74
  • 23. Uplaonkar DS, Patil N (2021) An efficient discrete wavelet transform based partial hadamard feature extraction and hybrid neural network based monarch butterfly optimization for liver tumor classification. Eng Sci 16:354–365
  • 24. Varshney S, Dalal T (2016) Plant disease prediction using image processing techniques - a review. Int J Comput Sci Mobile Comput 5(5):394–398
  • 25. Veerashetty S, Patil NB (2017) Texture feature extraction based on multichannel decoded local binary pattern. In: 2017 International conference on current trends in computer, electrical, electronics and communication (CTCEEC) (pp. 1173–1177). IEEE
  • 26. Veni S (2016) Image processing edge detection improvements and its applications. Int J Innov Sci Eng Res (IJISER) 3(6):51–54
  • 27. Virupakshappa AB (2018) An approach of using spatial fuzzy and level set method for brain tumor segmentation. Int J Tomogr Simul, 31(4)
  • 28. Zhang S, Wang H, Huang W (2017) Two stages plant species recognition by local mean clustering and weighted sparse representation classification. Clust Comput 20(2):1517–1525
  • 29. Zhang S, Wu X, You Z, Zhang L (2018) Leaf image based cucumber disease recognition using sparse representation classification. Comput Electron Agricult 134:135–141
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e83e3eac-71c2-478b-aed0-b4f892461941
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.