Czasopismo
2019
|
Vol. 19, nr 4(62)
|
67--82
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Carbon fiber has been used to reinforce both aliphatic and aromatic polyamides. Aliphatic polyamide is known as nylon and aromatic polyamide is often referred to as aramid. Among aliphatic polyamides, polyamide 6, polyamide 6,6, polyamide 11, polyamide 12, and polyamide 1010 have been used as matrices for carbon fiber. Factors affecting the properties of polyamide/carbon fiber composites are: fiber amount, fiber length, fiber orientation, matrix viscosity, matrix-fiber interactions, matrix-fiber adhesion, and conditions encountered during manufacturing processes. This article presents a state-of-the-art review on polyamide/carbon fiber composites. Polyamide/carbon fiber composites are lightweight and exhibit high strength, modulus, fatigue resistance, wear resistance, corrosion resistance, gear, electrical conductivity, thermal conductivity, chemical inertness, and thermal stability. Incorporation of oxidized or modified carbon fiber and nanoparticle modified carbon fiber into polyamide matrices have been found to further enhance their physical properties. Applications of polyamide/carbon fiber composites in aerospace, automobile, construction, and other industries have been stated in this review. To fully exploit potential of polyamide/carbon fiber composites, concentrated future attempts are needed in this field.
Czasopismo
Rocznik
Strony
67--82
Opis fizyczny
Bibliogr. 81 poz., rys., tab.
Twórcy
autor
- Quaid-i-Azam University Campus, Nanosciences Division, National Center For Physics, Islamabad, Pakistan, asheesgreat@yahoo.com
Bibliografia
- 1 . Drobny, J.G.: Handbook of thermoplastic elastomers. Elsevier (2014).
- 2 . Kausar, A.: Polyamide 1010/polythioamide blend reinforced with graphene nanoplatelet for automotive part application. Advances in Materials Science 17 (2017) 24-36.
- 3 . Katunin, A., Krukiewicz, K., Herega, A. and Catalanotti, G.: 2016. Concept of a conducting composite material for lightning strike protection. Advances in Materials Science 16 (2016) 32-46.
- 4 . Musztyfaga-Staszuk, M., Czupryński, A. and Kciuk, M.: Investigation of mechanical and anti-corrosion properties of flame sprayed coatings. Advances in Materials Science 18 (2018) 42-53.
- 5 . Murthy, N.S.: Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. Journal of Polymer Science Part B: Polymer Physics 44(2006) 1763-1782.
- 6 . Majumdar, B., Keskkula, H. and Paul, D.R.: Morphology development in toughened aliphatic polyamides. Polymer 35(1994) 1386-1398.
- 7 . Yang, C.Q., Wang, X.L., Jiao, Y.J., Ding, Y.L., Zhang, Y.F. and Wu, Z.S.: Linear strain sensing perfor-mance of continuous high strength carbon fibre reinforced polymer composites. Composites Part B: Engi-neering 102 (2016) 86-93.
- 8 . Yin, J., Liu, R.G., Huang, J.J., Liang, G., Liu, D. and Xie, G.H.: Comparative study on piezoresistive properties of CFRP tendons prepared by two different methods. Composites Part B: Engineering 129 (2017) 124-132.
- 9 . Tibbetts, G.G. and McHugh, J.J.: Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices. Journal of Materials Research 14 (1999) 2871-2880.
- 10 . Ozkan, C., Karsli, N.G., Aytac, A. and Deniz, V.: Short carbon fiber reinforced polycarbonate compo-sites: Effects of different sizing materials. Composites Part B: Engineering, 62 (2014) 230-235.
- 11 . Naskar, A.K., Keum, J.K. and Boeman, R.G.: Polymer matrix nanocomposites for automotive structural components. Nature nanotechnology, 11 (2016) 1026.
- 12 . Kovács, T.A., Nyikes, Z. and Figuli, L.: Development of a Composite Material for Impact Load. Acta Materialia Transylvanica, 2 (2019) 105-109.
- 13 . Ma, Y., Yang, Y., Sugahara, T. and Hamada, H.: A study on the failure behavior and mechanical proper-ties of unidirectional fiber reinforced thermosetting and thermoplastic composites. Composites Part B: Engi-neering, 99 (2016) 162-172.
- 14 . Kim, S., Lee, J., Roh, C., Eun, J. and Kang, C.: Evaluation of carbon fiber and p-aramid composite for industrial helmet using simple cross-ply for protecting human heads. Mechanics of Materials, 139 (2019) 103203.
- 15 . Cerretini, G. and Giacomin, G.: Structural Reinforcement of a Masonry Building. In Key Engineering Materials 817 (2019) 673-679.
- 16 . Amran, Y.M., Alyousef, R., Rashid, R.S., Alabduljabbar, H. and Hung, C.C.: Properties and applications of FRP in strengthening RC structures: A review. In Structures 16 (2018) 208-238. Elsevier.
- 17 . Szakács, J. and Mészáros, L.: Synergistic effects of carbon nanotubes on the mechanical properties of basalt and carbon fiber-reinforced polyamide 6 hybrid composites. Journal of Thermoplastic Composite Ma-terials, 31(2018) 553-571.
- 18 . Chen, H., Lim, C.L.J. and Fong, L.C.: PolyOne Corp, Polyamide compounds containing pitch carbon fiber. U.S. Patent 9,243,178 (2016).
- 19 . Kuciel, S., Kuźnia, P. and Jakubowska, P.: Properties of composites based on polyamide 10.10 rein-forced with carbon fiber. Polimery, 61 (2016).
- 20 . Shi, Z.Y., Cui, P. and Li, X.: A review on research progress of machining technologies of carbon fiber-reinforced polymer and aramid fiber-reinforced polymer. Proceedings of the Institution of Mechanical Engi-neers, Part C: Journal of Mechanical Engineering Science, 233 (2019) 4508-4520.
- 21 . Kutz, M.: ed. Applied plastics engineering handbook: processing and materials. William Andrew (2011).
- 22 . Page, I.B.: Polyamides as engineering thermoplastic materials. Smithers Rapra Publishing, vol. 11, (2000).
- 23 . Amintowlieh, Y., Sardashti, A. and Simon, L.C.: Polyamide 6–wheat straw composites: Effects of addi-tives on physical and mechanical properties of the composite. Polymer Composites 33 (2012) 976-984.
- 24 . Saba, N., Tahir, P.M. and Jawaid, M.: A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6 (2014) 2247-2273.
- 25 . Kwon, Y.N. and Leckie, J.O.: Hypochlorite degradation of crosslinked polyamide membranes: II. Changes in hydrogen bonding behavior and performance. Journal of membrane science 282 (2006) 456-464.
- 26 . Chung, H.Y., Hall, J.R., Gogins, M.A., Crofoot, D.G. and Weik, T.M.: Donaldson Co Inc, Polymer, polymer microfiber, polymer nanofiber and applications including filter structures. U.S. Patent 7,090,715 (2006).
- 27 . Lau, W.J., Gray, S., Matsuura, T., Emadzadeh, D., Chen, J.P. and Ismail, A.F.: A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water research 80 (2015) 306-324.
- 28 . Akkapeddi, M.K., Glans, J.H., Dege, G.J. and Chung, S.J.: Honeywell International Inc, Polyamide compositions comprising aliphatic polyamide and an aromatic polyamide oligomer having improved moisture resistance. U.S. Patent 5,541,267 (1996).
- 29 . Tanner, D.A.V.I.D., Fitzgerald, J., Riewald, P.G. and Knoff, W.F.: Aramid structure/property relation-ships and their role in applications development. Marcel Dekker, Inc., Handbook of Fiber Science and Tech-nology 3 (1989) pp.35-82.
- 30 . Slugin, I.V., Sklyarova, G.B., Kashirin, A.I. and Tkacheva, L.V.: Rusar para-aramid fibres for composite materials for construction applications. Fibre Chemistry 38 (2006) 25-26.
- 31 . Singh, A.P., Garg, P., Alam, F., Singh, K., Mathur, R.B., Tandon, R.P., Chandra, A. and Dhawan, S.K.; 2012. Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 50(2012) 3868-3875.
- 32 . Frank, E., Steudle, L.M., Ingildeev, D., Spoerl, J.M. and Buchmeiser, M.R.: Carbon fibers: precursor systems, processing, structure, and properties. Angewandte Chemie International Edition 53(2014), 5262-5298.
- 33 . Chand, S.: Review carbon fibers for composites. Journal of materials science, 35 (2000), 1303-1313.
- 34 . Behabtu, N., Young, C.C., Tsentalovich, D.E., Kleinerman, O., Wang, X., Ma, A.W., Bengio, E.A., ter Waarbeek, R.F., de Jong, J.J., Hoogerwerf, R.E. and Fairchild, S.B.: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 339 (2013), 182-186.
- 35 . Nataraj, S.K., Yang, K.S. and Aminabhavi, T.M.: Polyacrylonitrile-based nanofibers—A state-of-the-art review. Progress in polymer science 37(2012) 487-513.
- 36 . Dhand V, Mittal G, Rhee KY, Park S-J, Hui D.: A short review on basalt fiber reinforced polymer com-posites. Composites Part B: Engineering 73 (2015) 166-180.
- 37 . Liu, W., Mohanty, A.K., Askeland, P., Drzal, L.T., Misra, M.: Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites. Polymer 45 (2004) 7589-7596.
- 38 . Xu, J., Ma, Y., Zhang, Q., Sugahara, T., Yang, Y., Hamada, H.: Crashworthiness of carbon fiber hybrid composite tubes molded by filament winding. Composite Structures. 139 (2016) 130-140.
- 39 . Awad, Z.K., Aravinthan, T., Zhuge, Y., Gonzalez, F.: A review of optimization techniques used in the design of fibre composite structures for civil engineering applications. Materials & Design. 33 (2012) 534-544.
- 40 . Sharma M, Gao S, Mäder E, Sharma H, Wei LY, Bijwe J. Carbon fiber surfaces and composite inter-phases. Composites Science and Technology, 102 (2014) 35-50.
- 41 . Yao, S.S., Jin, F.L., Rhee, K.Y., Hui, D. and Park, S.J.: Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Composites Part B: Engineering 142 (2018) 241-250.
- 42 . An, H. J., Kim, J. S., Kim, K.-Y., Lim, D. Y. and Kim, D. H.: Mechanical and thermal properties of long carbon fiber-reinforced polyamide 6 composites. Fibers and Polymers 15 (2014) 2355-2359.
- 43 . Li, J. and Zhang, Y.F.: The tensile properties of short carbon fiber reinforced ABS and ABS/PA6 com-posites. Journal of Reinforced Plastics and Composites, 29 (2020) 1727-1733.
- 44 . Luo, H., Xiong, G., Ma, C., Li, D. and Wan, Y.: Preparation and performance of long carbon fiber rein-forced polyamide 6 composites injection-molded from core/shell structured pellets. Materials & Design, 64 (2014) 294-300.
- 45 . Yi, J.W., Lee, W., Seong, D.G., Won, H.J., Kim, S.W., Um, M.K. and Byun, J.H.: Effect of phenoxy-based coating resin for reinforcing pitch carbon fibers on the interlaminar shear strength of PA6 composites. Composites Part A: Applied Science and Manufacturing, 87 (2016) 212-219.
- 46 . Wu, S.H., Wang, F.Y., Ma, C.C.M., Chang, W.C., Kuo, C.T., Kuan, H.C. and Chen, W.J.: 2001. Me-chanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/clay nanocomposites. Materials Letters, 49 (2001) 327-333.
- 47 . Li, J.: Interfacial studies on the O3 modified carbon fiber-reinforced polyamide 6 composites. Applied Surface Science, 255 (2008) 2822-2824.
- 48 . Karsli, N.G. and Aytac, A.: Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites. Composites Part B: Engineering, 51 (2013) 270-275.
- 49 . Li J, Zhang YF.: The tensile properties of HNO3-treated carbon fiber reinforced ABS/PA6 composites. Surface and Interface Analysis 41(2009) 610-614.
- 50 . Ma, Y., Ueda, M., Yokozeki, T., Sugahara, T., Yang, Y. and Hamada, H.: A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites. Composite Structures, 160 (2017) 89-99.
- 51 . Costa, A.P.D., Botelho, E.C., Costa, M.L., Narita, N.E. and Tarpani, J.R.: A review of welding technol-ogies for thermoplastic composites in aerospace applications. Journal of Aerospace Technology and Man-agement, 4 (2012) 255-265.
- 52 . Botelho, E.C., Scherbakoff, N. and Rezende, M.C.: Study of polyamide 6/6 synthesis carried out by interfacial polymerization on carbon fibre. Polymer international, 51 (2002) 1261-1267.
- 53 . Botelho, E.C., Scherbakoff, N., Rezende, M.C., Kawamoto, A.M. and Sciamareli, J.: Synthesis of poly-amide 6/6 by interfacial polycondensation with the simultaneous impregnation of carbon fibers. Macromole-cules, 34 (2001) 3367-3375.
- 54 . Karsli, N.G., Ozkan, C., Aytac, A. and Deniz, V.: Effects of sizing materials on the properties of carbon fiber‐reinforced polyamide 6, 6 composites. Polymer Composites, 34 (2013) 1583-1590.
- 55 . Beylergil, B., Tanoğlu, M. and Aktaş, E.: Enhancement of interlaminar fracture toughness of carbon fiber–epoxy composites using polyamide‐6, 6 electrospun nanofibers. Journal of Applied Polymer Science, 134 (2017) 45244.
- 56 . Jin, X., Sun, J., Zhang, J.S., Gu, X., Bourbigot, S., Li, H., Tang, W. and Zhang, S.: Preparation of a novel intumescent flame retardant based on supramolecular interactions and its application in polyamide 11. ACS applied materials & interfaces, 9 (2017) 24964-24975.
- 57 . Bai, J., Yuan, S., Shen, F., Zhang, B., Chua, C.K., Zhou, K. and Wei, J.: Toughening of polyamide 11 with carbon nanotubes for additive manufacturing. Virtual and Physical Prototyping, 12 (2017) 235-240.
- 58 . Zierdt, P., Theumer, T., Kulkarni, G., Däumlich, V., Klehm, J., Hirsch, U. and Weber, A.: Sustainable wood-plastic composites from bio-based polyamide 11 and chemically modified beech fibers. Sustainable Materials and Technologies, 6 (2015) 6-14.
- 59 . Lao, S.C., Yong, W., Nguyen, K., Moon, T.J., Koo, J.H., Pilato, L. and Wissler, G.: Flame-retardant polyamide 11 and 12 nanocomposites: processing, morphology, and mechanical properties. Journal of com-posite materials, 44 (2010) 2933-2951.
- 60 . Zhang, Q., Jin, H., Wang, X. and Jing, X.: Morphology of conductive blend fibers of polyaniline and polyamide-11. Synthetic Metals, 123 (2001) 481-485.
- 61 . Sandler, J.K.W., Pegel, S., Cadek, M., Gojny, F., Van Es, M., Lohmar, J., Blau, W.J., Schulte, K., Win-dle, A.H. and Shaffer, M.S.P.: A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer, 45 (2004) 2001-2015.
- 62 . Perrot, C., Piccione, P.M., Zakri, C., Gaillard, P. and Poulin, P.: Influence of the spinning conditions on the structure and properties of polyamide 12/carbon nanotube composite fibers. Journal of Applied Polymer Science, 114 (2009) 3515-3523.
- 63 . Wiedmer, S. and Manolesos, M.: An experimental study of the pultrusion of carbon fiber-polyamide 12 yarn. Journal of thermoplastic composite materials, 19 (2006) 97-112.
- 64 . Erden, S., Ho, K.K., Lamoriniere, S., Lee, A.F., Yildiz, H. and Bismarck, A.: Continuous atmospheric plasma oxidation of carbon fibres: influence on the fibre surface and bulk properties and adhesion to polyam-ide 12. Plasma Chemistry and Plasma Processing, 30 (2010) 471-487.
- 65 . Kurokawa, M., Uchiyama, Y., Iwai, T. and Nagai, S.: Performance of plastic gear made of carbon fiber reinforced polyamide 12. Wear, 254 (2003) 468-473.
- 66 . Wang, J., Gu, M., Zhu, Z., Ge, S. and Liu, W.: Tribological properties of hybrid carbon fiber and MoS 2 reinforced polyamide 1010 composites. Fuhe Cailiao Xuebao (Acta Materiae Compositae Sinica, China), 20 (2003) 13-18.
- 67 . Wang, J.X., Ge, S.R. and Li, L.: Effect of counterpart surface roughness on the tribological behavior of carbon fiber reinforced polyamide 1010 composites. Mocaxue Xuebao (Tribology, China), 21 (2001) 106-109.
- 68 . WANG, J.X. and GU, M.Y.: Tribological Behaviors and Wear Mechanism of Carbon Fiber Reinforced Nylon 1010 Composites. Materials For Mechanical Engineering, 7 (2003).
- 69 . Nikiforov, A.A., Vol’fson, S.I., Okhotina, N.A., Rinberg, R., Hartmann, T. and Kroll, L.: Mechanical properties of the compositions based on biopolyamide-1010 modified by carbon, glass, and cellulose chopped fibers. Russian Metallurgy (Metally), 4 (2017) 279-282.
- 70 . Ge, S., Zhang, D., Zhu, H. and Wang, J.: Mechanical properties and their influence on the friction and wear of the carbon fibers reinforced polyamide 1010. Fuhe Cailiao Xuebao(Acta Mater. Compos. Sin., China), 21(2004) 99-104.
- 71 . Nikiforov, A.A., Okhotina, N.A., Fayzullin, I.Z., Volfson, S.I., Rinberg, R. and Kroll, L., 2016, Novem-ber. Stress-strain properties of composites based on bio-based polyamide 1010 filled with cut fibers. In AIP Conference Proceedings, AIP Publishing, vol. 1785 (2016) 030018.
- 72 . Sun, Z., Hu, X., Sun, S. and Chen, H.: Energy-absorption enhancement in carbon-fiber aluminum-foam sandwich structures from short aramid-fiber interfacial reinforcement. Composites Science and Technology, 77 (2013) 14-21.
- 73 . Feldman, A.Y., Gonzalez, M.F., Wachtel, E., Moret, M.P. and Marom, G.: Transcrystallinity in aramid and carbon fiber reinforced nylon 66: determining the lamellar orientation by synchrotron X-ray micro diffraction. Polymer, 45 (2004) 7239-7245.
- 74 . Won, M.S. and Dharan, C.K.H.: Drilling of aramid and carbon fiber polymer composites. Journal of Manufacturing Science and Engineering, 124 (2002) 778-783.
- 75 . Ma, Y., Sugahara, T., Yang, Y. and Hamada, H.: A study on the energy absorption properties of carbon/aramid fiber filament winding composite tube. Composite Structures, 123 (2015) 301-311.
- 76 . Kozlov, G.V., Burya, A.I., Dolbin, I.V. and Zaikov, G.E.: Fractal model of the heat conductivity for carbon fiber‐reinforced aromatic polyamide. Journal of applied polymer science, 100 (2006) 3828-3831.
- 77 . Duchoslav, J., Unterweger, C., Steinberger, R., Fürst, C. and Stifter, D.: Investigation on the thermo-oxidative stability of carbon fiber sizings for application in thermoplastic composites. Polymer Degradation and Stability, 125 (2016) 33-42.
- 78 . Hofstätter, T., Pedersen, D.B., Tosello, G. and Hansen, H.N.: State-of-the-art of fiber-reinforced poly-mers in additive manufacturing technologies. Journal of Reinforced Plastics and Composites, 36 (2017) 1061-1073.
- 79 . Trigo‐López, M., Barrio‐Manso, J.L., Serna, F., García, F.C. and García, J.M.: Crosslinked Aromatic Polyamides: A Further Step in High‐Performance Materials. Macromolecular Chemistry and Physics, 214 (2013) 2223-2231.
- 80 . Trigo-López, M., Estévez, P., San-José, N., Gómez-Valdemoro, A., García, F.C., Serna, F., Pena, J.L. and García, J.M.: Recent patents on aromatic polyamides. Recent Patents on Materials Science, 2 (2009) 190-208.
- 81 . Dike, A.S.: Improvement of mechanical and physical properties of carbon fiber-reinforced polyamide composites by applying different surface coatings for short carbon fiber. Journal of Thermoplastic Composite Materials, (2009) 0892705719877218.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e8200116-c5cc-47f0-9043-6289f8ed7308