Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 55, nr 1 | 939--951
Tytuł artykułu

Characterizations of quasi-metric and G-metric completeness involving w-distances and fixed points

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Involving w-distances we prove a fixed point theorem of Caristi-type in the realm of (non-necessarily T1) quasi-metric spaces. With the help of this result, a characterization of quasi-metric completeness is obtained. Our approach allows us to retrieve several key examples occurring in various fields of mathematics and computer science and that are modeled as non- T1 quasi-metric spaces. As an application, we deduce a characterization of complete G -metric spaces in terms of a weak version of Caristi’s theorem that involves a G-metric version of w-distances.
Wydawca

Rocznik
Strony
939--951
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
  • Division of Applied Mathematics, Thu Dau Mot University, Thu Dau Mot City 820000, Binh Duong Province, Vietnam, erdalkarapinar@tdmu.edu.vn
  • Department of Mathematics, Çankaya University, 06790, Etimesgut, Ankara, Turkey
  • Department of Medical Research, China Medical University Hospital, China Medical University, 40402, Taichung, Taiwan
  • Instituto Universitario de Matemática Pura y Aplicada-IUMPA, Universitat Politècnica de València, 46022 Valencia, Spain, sromague@mat.upv.es
  • Instituto Universitario de Matemática Pura y Aplicada-IUMPA, Universitat Politècnica de València, 46022 Valencia, Spain, pedtipe@mat.upv.es
Bibliografia
  • [1] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Am. Math. Soc. 215 (1976), 241–251.
  • [2] A. W. Kirk, Caristi’s fixed point theorem and metric convexity, Colloq. Math. 36 (1976), 81–86.
  • [3] H. K. Pathak, An Introduction to Nonlinear Analysis and Fixed Point Theory, Springer, Singapore, 2018.
  • [4] F. Khojasteh, E. Karapınar, and H. Khandani, Some applications of Caristi’s fixed point theorem in metric spaces, Fixed Point Theory Appl. 2016 (2016), 16.
  • [5] S. Romaguera and P. Tirado, A characterization of Smyth complete quasi-metric spaces via Caristi’s fixed point theorem, Fixed Point Theory Appl. 2015 (2015), 183.
  • [6] I. Ekeland, Sur les problèmes variationnels, CR Acad. Sci. Paris 275 (1972), 1057–1059.
  • [7] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353.
  • [8] C. Gutiérrez, G. Kassay, V. Novo, and J. L. Ródenas-Pedregosa, Ekeland variational principles in vector equilibrium problems, SIAM J. Optim. 27 (2017), 2405–2425.
  • [9] E. Hashemi, R. Saadati, and C. Park, Generalized Ekeland’s variational principle with applications, J. Inequal. Appl. 2019 (2019), 250.
  • [10] C. L. Zhang and N. J. Huang, On Ekeland’s variational principle for interval-valued functions with applications, Fuzzy Sets Syst. 436 (2022), 152–174.
  • [11] M. Bota, A. Molnár, and C. Varga, On Ekeland’s variational principle in b-metric spaces, Fixed Point Theory 12 (2011), 21–28.
  • [12] W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014.
  • [13] N. V. Dung and V. T. L. Hang, On relaxations of contraction constants and Caristi’s theorem in b-metric spaces, J. Fixed Point Theory Appl. 18 (2016), 267–284.
  • [14] R. Miculescu and A. Mihail, Caristi-Kirk Type and Boyd and Wong-Browder-Matkowski-Rus type fixed point results in b-metric spaces, Filomat. 31 (2017), no., 4331–4340.
  • [15] E. Karapınar, F. Khojasteh, and Z. D. Mitrović, A proposal for revisiting Banach and Caristi type theorems in b-metric spaces, Mathematics 7 (2019), 308.
  • [16] S. Romaguera, On the correlation between Banach contraction principle and Caristi’s fixed point theorem in b-metric spaces, Mathematics 10 (2022), 136.
  • [17] M. Abbas, B. Ali, and S. Romaguera, Multivalued Caristi’s type mappings in fuzzy metric spaces and a characterization of fuzzy metric completeness, Filomat 29 (2015), 1217–1222.
  • [18] J. R. Jachymski, Caristi’s fixed point theorem and selections of set-valued contractions, J. Math. Anal. Appl. 227 (1998), 55–67.
  • [19] W. Kirk, Metric fixed point theory: a brief retrospective, Fixed Point Theory Appl. 2015 (2015), 215.
  • [20] M. A. Khamsi, Introduction to metric fixed point theory, In: Topics in Fixed Point Theory, S. Almezel, Q. H. Ansari, and M. A. Khamsi, Eds., Springer, New York-Heidelberg-Dordrecht-London, 2014, pp. 1–32.
  • [21] M. A. Khamsi and W. M. Kozlowski, Fixed Point Theory in Modular Function Spaces, Birkhauser, Springer, Basel, Switzerland, 2015.
  • [22] W. M. Kozlowski, A purely metric proof of Caristi’s fixed point theorem, Bull. Aust. Math. Soc. 95 (2017), 333–337.
  • [23] O. Kada, T. Suzuki, and W. Tahakaski, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996), 381–391.
  • [24] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl. 2010 (2010), Article ID 493298.
  • [25] W-S. Du, A simple proof of Caristi’s fixed point theorem without using Zorn’s lemma and transfinite induction, Thai J. Math. 14 (2016), 259–264.
  • [26] E. Karapınar and S. Romaguera, On the weak form of Ekeland’s Variational Principle in quasi-metric spaces, Topol. Appl. 184 (2015), 54–60.
  • [27] K. Darko, H. Lakzian, and V. Rakočević, Ćirić’s and Fisher’s quasi-contractions in the framework of wt-distance, Rend. Circ. Mat. Palermo, II. Ser (2021). DOI: https://doi.org/10.1007/s12215-021-00684-w.
  • [28] L. B. Ćirić, On Sehgal’s map with a contractive iterate at a point, Publ. Inst. Math. 33 (1983), 59–62.
  • [29] D. Kocev, E. Karapınar, and V. Rakočević, On quasi-contraction mappings of Ćirić and Fisher type via w-distance, Quaest. Math. 42 (2019), 1–14.
  • [30] E. Karapınar, Z. D. Mitrović, A. Öztürk, and S. Radenović, On a theorem of Ćirić in b-metric spaces, Rend. Circ. Mat. Palermo Ser. II 70 (2020), 217–225.
  • [31] J. Marín, S. Romaguera, and P. Tirado, Q-Functions on quasimetric spaces and fixed points for multivalued maps, Fixed Point Theory Appl. 2011, 2011, Article ID 603861.
  • [32] E. Karapınar, S. Romaguera, and P. Tirado, Contractive multivalued maps in terms of Q-functions on complete quasimetric spaces, Fixed Point Theory Appl. 2014 (2014), 53.
  • [33] S. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Birkhaüser/Springer, Basel, Switzerland, 2013.
  • [34] R. Engelking, General Topology, 2nd Edition, Sigma Series Pure Math., Heldermann Verlag, Berlin, 1989.
  • [35] A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. 22 (2005), 73–99.
  • [36] S. G. Matthews, Partial metric topology, In: Proceedings of the 8th Summer Conference on General Topology and Applications, Annals of the New York Academy of Sciences, vol. 728 1994, pp. 183–197.
  • [37] M. Schellekens, The Smyth completion: A common foundation for denotational semantics and complexity analysis, Electronic Notes Theoret. Comput. Sci. 1 (1995), 535–556.
  • [38] S. Romaguera and M. Schellekens, Quasi-metric properties of complexity spaces, Topology Appl. 98 (1999), 311–322. [39] S. Romaguera and O. Valero, Domain theoretic characterisations of quasi-metric completeness in terms of formal balls, Math. Struct. Comput. Sci. 20 (2010), 453–472.
  • [40] J. Goubault-Larrecq, Non-Hausdorff Topology Non-Hausdorff topology and domain theory, New Mathematical Monographs, vol. 22, Cambridge University Press, Cambridge, 2013.
  • [41] S. Park, On generalizations of the Ekeland-type variational principles, Nonlinear Anal. 39 (2000), 881–889.
  • [42] S. Al-Homidan, Q. H. Ansari, and J. C. Yao, Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory Nonlinear Anal. TMA 69 (2008), 126–139.
  • [43] I. L. Reilly, P. V. Subrahmanyam, and M. K. Vamanamurthy, Cauchy sequences in quasi-pseudo-metric space, Mh. Math. 93 (1982), 127–140.
  • [44] S. Romaguera and O. Valero, On the structure of the space of complexity partial functions, Int. J. Comput. Math. 85 (2008), 631–640.
  • [45] S. Romaguera, M. P. Schellekens, and O. Valero, The complexity space of partial functions: a connection between complexity analysis and denotational semantics, Int. J. Comput. Math. 88 (2011), 1819–1829.
  • [46] S. Cobza̧s, Completeness in quasi-metric spaces and Ekeland variational principle, Topol. Appl. 158 (2011), 1073–1084.
  • [47] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289–297.
  • [48] R. P. Agarwal and E. Karapınar, Remarks on some coupled fixed point theorems in G-metric spaces, Fixed Point Theory Appl. 2013 (2013), 2.
  • [49] R. P. Agarwal, E. Karapınar, D. O’Regan, and A. F. Roldán-López-de-Hierro, Fixed Point Theory in Metric Type Spaces, Springer, Cham Heidelberg New York Dordrecht London, 2015.
  • [50] R. P. Agarwal, E. Karapınar, and A. F. Roldán-López-de-Hierro, Fixed point theorems in quasimetric spaces and applications to multidimensional fixed points on G-metric spaces, J. Nonlinear Convex Anal. 16 (2015), 1787–1816.
  • [51] R. P. Agarwal, E. Karapınar, and A. F. Roldán-López-de-Hierro, Last remarks on G-metric spaces and fixed point theorems, RACSAM-Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 110 (2016), 433–456.
  • [52] T. V. An, N. V. Dung, and V. T. L. Hang, A new approach to fixed point theorems on G-metric spaces, Topol. Appl. 160 (2013), 1486–1493.
  • [53] E. Karapınar, A. F. Roldán-López-de-Hierro, and B. Samet, Matkowski theorems in the context of quasi-metric spaces and consequences on G-metric spaces, Analele Stiint. ale Univ. Ovidius Constanta Ser. Mat. 24 (2016), 309–333.
  • [54] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl. 2009 (2009), 10.
  • [55] S. Romaguera and P. Tirado, Fixed point theorems that characterize completeness of G-metric spaces, J. Nonlinear Convex Anal. 23 (2022), 1525–1536.
  • [56] R. Saadati, S. M. Vaezpour, P. Vetro, and B. E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Model. 52 (2010), 797–801.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e7db7dec-c425-4490-a6d6-ab3d7b0766d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.