Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 99, nr 3 | 218--230
Tytuł artykułu

A review of the behavior of fuel drops in a fuel spray in the context of biofuels

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In addition to gasoline and diesel fuel, the biofuels HVO and FAME have been taken into wide use during the last decades. The properties of gasoline and diesel fuel and their effect on the combustion process have been studied for a long time, but studies on HVO and FAME are still are very much work-in-progress. Existing studies show that the use of biodiesels reduces the level of several exhaust gas emissions (like soot) in engine exhaust gases. At the same time, the reasons for the reduction of emission compounds remain unclear. The motivation behind determining drop size and behavior is to aid assessment of the quality of the air-fuel mixture with a view to explaining the reduction in soot emission when biodiesels are used. The aim of this review paper is to provide an overview of the behavior of fuel drops and their size in fuel injectors when using different biofuels by giving a theoretical background based on literature, on the basis of which the calculations give an opportunity to evaluate experimental results of the behavior of different biofuels in the fuel spray. This study compares four different fuel types according to the WAVE-RT model. In addition, the collision mechanisms of drops (reflexive and stretching separation) are presented and these shall be compared for the fuel types. The results show that during the use of biofuels, the drop size is somewhat larger compared to diesel fuel.
Wydawca

Rocznik
Strony
218--230
Opis fizyczny
Bibliogr. 125 poz., rys., tab., wykr.
Twórcy
autor
  • Estonian University of Life Sciences, Institute of Technology, Kreutzwaldi 56, Tartu, 51006, Estonia
autor
  • Estonian University of Life Sciences, Institute of Technology, Kreutzwaldi 56, Tartu, 51006, Estonia
autor
  • Estonian University of Life Sciences, Institute of Technology, Kreutzwaldi 56, Tartu, 51006, Estonia
autor
  • Estonian University of Life Sciences, Institute of Technology, Kreutzwaldi 56, Tartu, 51006, Estonia
Bibliografia
  • [1] A. Kuut, R. Ilves, K. Kuut, V. Raide, K. Ritslaid, J. Olt, Influence of European Union Directives on the Use of Liquid Biofuel in the Transport Sector, Procedia Engineering (2017) 30–39.
  • [2] J. Xue, T. E. Grift, A. C. Hansen, Effect of biodiesel on engine performances and emissions, Renewable and Sustainable Energy Reviews 15 (2011) 1098–1116.
  • [3] H. Hazar, Effects of biodiesel on a low heat loss diesel engine, Renewable Energy 34 (2009) 1533–1537.
  • [4] A. N. Ozsezen, M. Canakci, A. Turkcan, C. Sayin, Performance and combustion characteristics of a DI diesel engine fueled with waste palm oil and canola oil methyl esters, Fuel 88 (2009) 629–636.
  • [5] Z. Utlu, M. S. Koçak, The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions, Renewable Energy 33 (2008) 1936–1941.
  • [6] H. Ozgunay, S. Çolak, G. Zengin, O. Sari, H. Sarikahya, L. Yuceer, Performance and emission study of biodiesel from leather industry pre-fleshings, Waste Management 27 (2007) 1897–1901.
  • [7] C. Kaplan, R. Arslan, A. Surmen, Performance characteristics of sunflower methyl esters as biodiesel, Energy Sources Part A Recovery Utilization and Environmental Effects 28 (2006) 751–755.
  • [8] J. F. Reyes, M. A. Sepúlveda, PM-10 emissions and power of a diesel engine fueled with crude and refined biodiesel from salmon oil, Fuel 85 (2006) 1714–1719.
  • [9] H. Raheman, A. G. Phadatare, Diesel engine emissions and performance from blends of karanja methyl ester and diesel, Biomass and Bioenergy 27 (2004) 393–397.
  • [10] Y. Ulusoy, Y. Tekin, M. Cetinkaya, F. Karaosmanoglu, The engine tests of biodiesel from used frying oil, Energy Sources 26 (2004) 927–932.
  • [11] S.-H. Choi, Y. Oh, The emission effects by the use of biodiesel fuel, International Journal of Modern Physics B 20 (2006) 4481–4486.
  • [12] B.-F. Lin, J.-H. Huang, D.-Y. Huan, Experimental study of the effects of vegetable oil methyl ester on DI diesel engine performance characteristics and pollutant emissions, Fuel 88 (2009) 1779–1785.
  • [13] D. H. Qi, L. M. Geng, H. Chen, Y. Z. H. Bian, J. Liu, X. C. H. Ren, Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil, Renewable Energy 34 (2009) 2706–2713.
  • [14] M. Lapuerta, J. M. Herreros, L. L. Lyons, R. García-Contreras, Y. Briceño, Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions, Fuel 87 (2008) 3161–3169.
  • [15] H. Kim, B. Choi, The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine, Renewable Energy 35 (2010) 157–163.
  • [16] X. Meng, G. Chen, Y. Wang, Biodiesel production from waste cooking oil via alkali catalyst and its engine test, Fuel Processing Technology 89 (2008) 851–857.
  • [17] A. Hull, I. Golubkov, B. Kronberg, J. van Stam, Alternative fuel for a standard diesel engine, International Journal of Engine Research 7 (2006) 51–63.
  • [18] M. Gumus, S. Kasifoglu, Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel, Biomass and Bioenergy 34 (2010) 134–139.
  • [19] A. Pal, A. Verma, S. S. Kachhwaha, S. Maji, Biodiesel production through hydrodynamic cavitation and performance testing, Renewable Energy 35 (2010) 619–624.
  • [20] A. S. Ramadhas, C. Muraleedharan, S. Jayaraj, Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil, Renewable Energy 30 (2005) 1789–1800.
  • [21] D. Sharma, S. L. Soni, J. Mathur, Emission reduction in a direct injection diesel engine fueled by neem-diesel blend, Energy Reports 31 (2009) 500–508.
  • [22] M. Guru, A. Koca, O. Can, C. Çınar, F. ¸Sahin, Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine, Renewable Energy 35 (2010) 637–643.
  • [23] L. Zhu, W. Zhang, W. Liu, Z. Hunag, Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends, Science of Total Environment 408 (2010) 1050–1058.
  • [24] K. Ryu, The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants, Bioresource Technology 101 (2010) S78–S82.
  • [25] J. M. Luján, V. Bermúdez, B. Tormos, B. Pla, Comparative analysis of a DI diesel engine fuelled with biodiesel blends during the European MVEG-A cycle: Performance and emissions (II), Biomass and Bioenergy 33 (2009) 948–956.
  • [26] C. S. Cheung, L. Zhu, Z. Huang, Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol, Atmospheric Environment 43 (2009) 4865–4872.
  • [27] S. J. Deshmukh, L. B. Bhuyar, Transesterified Hingan (Balanites) oil as a fuel for compression ignition engines, Biomass and Bioenergy 33 (2009) 108–112.
  • [28] A. Tsolakis, A. Megaritis, M. L. Wyszynski, K. Theinnoi, Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation), Energy 32 (2007) 2072–2080.
  • [29] H. Raheman, S. V. Ghadge, Performance of compression ignition engine with mahua (Madhuca indica) biodiesel, Fuel 86 (2007) 2568– 2573.
  • [30] D. Agarwal, S. Sinha, A. K. Agarwal, Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine, Renewable Energy 31 (2006) 2356–2369.
  • [31] S. Puhan, N. Vedaraman, V. B. R. Boppana, J. Jeychandran, G. Sankarnarayanan, Mahua oil (Madhuca Indica seed oil) methyl ester as biodiesel-preparation and emissioon characterstics, Biomass and Bioenergy 28 (2005) 87–93.
  • [32] M. Canakci, Performance and emissions characteristics of biodiesel from soybean oil, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 219 (2005) 915– 922.
  • [33] M. Canakci, J. H. van Gerpen, Comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel, Transactions of the ASAE 46 (2003) 937–944.
  • [34] A. Senatore, M. Cardone, V. Rocco, M. V. Prati, A Comparative Analysis of Combustion Process in D.I. Diesel Engine Fueled with Biodiesel and Diesel Fuel, SAE paper 2000 1 (2000) 0691.
  • [35] M. J. Haas, K. M. Wagner, T. L. Alleman, R. L. McCormick, Engine performance of biodiesel fuel prepared from soybean soapstock: a high quality renewable fuel produced from a waste feedstock, Energy & Fuels 15 (2001) 1207–1212.
  • [36] P. K. Sahoo, L. M. Das, M. K. G. Babu, S. N. Naik, Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine, Fuel 86 (2007) 448–454.
  • [37] B. Baiju, M. K. Naik, L. M. Das, A comparative evaluation of compression ignition engine characteristics using methyl and ethyl esters of Karanja oil, Renewable Energy 34 (2009) 1616–1621.
  • [38] F. Wu, J. Wang, W. Chen, S. Shuai, A study on emission performance of a diesel engine fueled with five typical methyl ester biodiesels, Atmospheric Environment 43 (2009) 1481–1485.
  • [39] Y. Ulusoy, R. Arslan, C. Kaplan, Emission characteristics of sunflower oil methyl ester, Energy Sources Part A 11 (2009) 906–910.
  • [40] C.-Y. Lin, R.-J. Li, Engine performance and emission characteristics of marine fish-oil biodiesel produced from the discarded parts of marine fish, Fuel Processing Technology 90 (2009) 883–888.
  • [41] D. Tziourtzioumis, L. Demetriades, O. Zogou, T. Stamatelos, Experimental investigation of the effect of a B70 biodiesel blend on a common-rail passenger car diesel engine, Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering 223 (2009) 685–701.
  • [42] M. Zheng, M. C. Mulenga, G. T. Reader, M. Wang, D. S.-K. Ting, J. Tjong, Biodiesel engine performance and emissions in low temperature combustion, Fuel 87 (2008) 714–722.
  • [43] M. E. Tat, J. H. van Gerpen, P. S. Wang, Fuel Property Effects on Injection Timing, Ignition Timing and Oxides of Nitrogen Emissions from Biodiesel-Fueled Engines, Transactions ASABE 50 (2007) 1123–1128.
  • [44] S. Kalligeros, F. Zannikos, S. Stournas, E. Lois, G. Anastopoulus, C. Teas, F. Sakellaropoulos, An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine, Biomass and Bioenergy 24 (2003) 141–149.
  • [45] M. Lapuerta, O. Armas, R. Ballestros, Diesel particulate emissions from biofuels derived from Spanish vegetable oils, SAE Paper 2002 1 (2002) 1657.
  • [46] H. Jung, D. B. Kittelson, M. R. Zachariah, Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation, Environmental Science Technologies 40 (2006) 4949–4955.
  • [47] A. Monyem, J. H. van Gerpen, The effect of biodiesel oxidation on engine performance and emissions, Biomass and Bioenergy 20 (2001) 317–325.
  • [48] M. S. Graboski, R. L. McCormick, T. L. Alleman, A. M. Herring, The effect of biodiesel composition on engine emissions from a DDC series 60 diesel engine, National Renewable Energy Laboratory (2003) NREL/SR–510–31461.
  • [49] W. G. Wang, D. W. Lyons, N. N. Clark, M. Gautam, Emissions from nine heavy trucks fuelled by diesel and biodiesel blend without engine modification, Environmental Science and Technology 34.
  • [50] M. Cardone, M. V. Prati, V. Rocco, M. Seggiani, A. Senatore, S. Vitolo, Brassica carinata as an alternative oil crop for the production of biodiesel in italy engine performance and regulated and unregulated exhaust emissions, Environmental Science & Technology 36 (2002) 4656–4662.
  • [51] N. Y. Kado, P. A. Kuzmicky, Progress in Energy and Combustion Science, National Renewable Energy Laboratory (2003) NREL/SR– 510–31463.
  • [52] M. Lapuerta, O. Armas, R. Ballestros, M. Carmona, Fuel formulation effects on passenger car diesel engine particulate emissions and composition, SAE Paper 2000 (2000) 1850.
  • [53] O. Armas, J. J. Hernández, M. D. Cárdenas, Reduction of diesel smoke opacity from vegetable oil methyl esters during transient operation, Fuel 85 (2006) 2427–2438.
  • [54] K. Yamane, A. Ueta, Y. Shimamoto, Influence of physical and chemical properties of biodiesel fuels on injection, combustin and exhaust emission characteristics in a direct injection compression ignition engine, International Journal of Engine Research 2 (2001) 249–261.
  • [55] M. Lapuerta, O. Armas, J. M. Herreros, Emissions from a dieselbiodiesel blend in an automotive diesel engine, Fuel 1 (2008) 25–31.
  • [56] M. Lapuerta, O. Armas, R. Ballesteros, J. Fernández, Diesel emissions from biofuels derived from Spanish potential vegetable oils, Fuel 84 (2005) 773–780.
  • [57] K. Dincer, Lower Emissions from Biodiesel Combustion, Energy Sources 30 (2008) 963–968.
  • [58] G. Fontaras, G. Karavalakis, M. Kousoulidou, T. Tzamkiozis, L. Ntziachristos, E. Bakeas, S. Stournas, Z. Samaras, Effects of biodiesel on passenger car fuel consumption, regulated and non-regulated pollutant emissions over legislated and real-world driving cycles, Fuel 88 (1608-1617) 2009.
  • [59] T. Bohl, A. Smallbone, G. Tian, A. P. Roskilly, Particulate number and NOx trade-off comparisons between HVO and mineral diesel in HD applications, Fuel 215 (2018) 90–101.
  • [60] C. Vo, C. Charoenphonphanich, P. Karin, S. Susumu, K. Hidenori, Effects of variable O2 concentrations and injection pressures on the combustion and emissions characteristics of the petro-diesel and hydrotreated vegetable oil-based fuels under the simulated diesel engine condition, Journal of the Energy Institute 91 (2018) 1071–1084.
  • [61] G. Brenn, Droplet collision. Handbook of atomization and sprays: theory and applications, Nasser Ashgriz, 2011.
  • [62] N. Nikolopoulos, K.-S. Nikas, G. Bergeles, A numerical investigation of central binary collision of droplets, Computers & Fluids 38 (2009) 1191–1202.
  • [63] M. R. H. Nobari, J. Jan, G. Tryggvason, Head-on collision of drops - a numerical investigation, Physics of Fluids 8 (1995) 29–42.
  • [64] J. Li, Macroscopic Model for Head-On Binary Droplet Collisions in a Gaseous Medium, Physics Review Letters 117.
  • [65] M. Liu, D. Bothe, Numerical study of head-on droplet collisions at high Weber numbers, Journal of Fluid Mechanics 789 (2016) 785–805.
  • [66] J. Qian, C. K. Law, Regimes of coalescence and separation in droplet collision, Journal of Fluid Mechanics 331 (1997) 59–80.
  • [67] R. S. Volkov, G. V. Kuznetsov, P. A. Strizhak, Statistical analysis of consequences of collisions between two water droplets upon their motion in a high-temperature gas flow, Technical Physics Letters 41 (2015) 840–843.
  • [68] D. V. Antonov, R. S. Volkov, G. V. Kuznetsov, P. A. Strizhak, Experimental Study of the Effects of Collision of Water Droplets in a Flow of High-Temperature Gases, Journal of Engineering Physics and Thermophysics 89 (2016) 100–111.
  • [69] R. D. Reitz, F. V. Bracco, Mechanisms of Breakup of Round Liquid Jets, The Encyclopedia of Fluid Mechanics 3 (1986) 223–249.
  • [70] R. D. Reitz, Modeling atomization processes in high-pressure vaporizing sprays, Atomisation and Spray Technology 3 (1987) 309–337.
  • [71] P. O’Rourke, A. Amsden, The Tab Method for Numerical Calculation of Spray Droplet Breakup, SAE Technical Paper 872089.
  • [72] Diesel-Egnine Management, 4th Edition, Robert Bosch GmbH, 2006.
  • [73] S. Budavari, The Merck index : an encyclopedia of chemicals, drugs, and biologicals, Whitehouse Station, N.J Merck, 2001.
  • [74] X. Jiang, A. J. James, Head-on collision of two equal-sized drops with van der Waals forces, Advances in Fluid Mechanics 37.
  • [75] M. Saroka, N. Ashgriz, M. Movassat, Numerical Investigation of Head-on Binary Drop Collisions in a Dynamically Inert Environment, Journal of Applied Fluid Mechanics 5 (2012) 23–37.
  • [76] K. G. Krishnan, E. Loth, Effects of gas and droplet characteristics on drop-drop collision outcome regimes, International Journal of Multiphase Flow 77 (2015) 171–186.
  • [77] Y. R. Zhang, X. Z. Jiang, K. H. Luo, Bounce regime of droplet collisions: A molecular dynamics study, Journal of Computational Science 17 (2016) 457–462.
  • [78] J.-P. Estrade, H. Carentz, G. Lavergne, Y. Biscos, Experimental investigation of dynamic binary collision of ethanol droplets – a model for droplet coalescence and bouncing, International Journal of Heat and Fluid Flow 20 (1999) 486–491.
  • [79] M. Ashna, M. H. Rahimian, LMB simulation of head-on collision of evaporating and burning droplets in coalescence regime, International Journal of Heat and Mass Transfer 109 (2017) 520–536.
  • [80] C. Focke, M. Kuschel, M. Sommerfeld, D. Bothe, Collision between high and low viscosity droplets: Direct Numerical Simulations and experiments, International Journal of Multiphase Flow 56 (2013) 81–92.
  • [81] S. Kim, D. J. Lee, C. S. Lee, Modeling of binary droplet collisions for application to inter-impingement sprays, International Journal of Multiphase Flow 35 (2009) 533–549.
  • [82] L. F. R. S. Rayleigh, On the instability of jets, London Mathematical Society.
  • [83] A. M. Worthington, A Study of Splashes, Longmans, 1908.
  • [84] A. Munnanur, R. D. Reitz, A new predictive model for fragmenting and non-fragmenting binary droplet collisions, International Journal of Multiphase Flow 33 (2007) 873–896.
  • [85] S. L. Post, J. Abraham, Modeling the outcome of drop–drop collisions in Diesel sprays, International Journal of Multiphase Flow 28 (2002) 997–1019.
  • [86] F. V. Bracco, Modeling of engine sprays, SAE Transactions 94 (1985) 144–167.
  • [87] D. L. Siebers, Liquid-phase fuel penetration in Diesel sprays, SAE Technical Paper 980809.
  • [88] H. Liu, Science and Engineering of Droplets, William Andrew Inc., 1999.
  • [89] S. Hou, D. P. Schmidt, Adaptive collision meshing and satellite droplet formation in spray simulations, International Journal of Multiphase Flow 32 (2006) 935–956.
  • [90] H. Hiroyasu, M. Arai, Structures of Fuel Sprays in Diesel Engines, SAE Technical Paper 900475.
  • [91] H. Hiroyasu, M. Arai, M. Tabata, Empirical Equations for the Sauter Mean Diameter of a Diesel Spray, SAE Technical Paper 890464.
  • [92] H. Hiruyasu, T. Kadota, Fuel Droplet Size Distribution in Diesel Combustion Chamber, SAE Technical Paper 740715.
  • [93] P. J. O’Rourke, Collective drop effects on vaporizing liquid sprays, Ph.D thesis, Mechanical and Aerospace Engineering, Princeton University, USA.
  • [94] Y. Maruyama, T. Chiba, M. Saito, M. Arai, Effect of the interimpingement system, Proceedings of ILASS-Asia (2001) 241–246.
  • [95] C. Arcoumanis, M. Gavaises, B. French, Effect of Fuel Injection Processes on the Structure of Diesel Sprays, SAE Technical Paper 970799.
  • [96] L. Martinelli, F. V. Bracco, R. D. Reitz, Comparisons of computed and measured dense spray jets, Progress in Astronautics and Aeronautics 95 (1984) 484–512.
  • [97] D. R. Guilenbecher, C. López-Rivera, P. E. Sojka, Secondary atomization, Experiments in Fluids 46 (2009) 371–402.
  • [98] T. Kekesi, G. Amberg, L. P. Wittberg, Drop deformation and breakup, International Journal of Multiphase Flow 66 (2014) 1–10.
  • [99] G. Strotos, I. Malgarinos, N. Nikolopoulus, M. Gavaises, Predicting droplet deformation and breakup for moderate Weber numbers, International Journal of Multiphase Flow 85 (2016) 96–109.
  • [100] F. Xiao, Z. G. Wang, M. B. Sun, N. Liu, X. Yang, Simulation of drop deformation and breakup in supersonic flow, Proceedings of the Combustion Institute 36 (2017) 2417–2424.
  • [101] G. Strotos, I. Malgarinos, N. Nikolopoulus, M. Gavaises, Aerodynamic breakup of an n-decane droplet in a high temperature gas environment, Fuel 185 (2016) 370–380.
  • [102] K.-S. Im, K.-C. Lin, M.-C. Lai, M. S. Chon, Breakup modeling of a liquid jet in cross flow, International Journal of Automotive Technology 12 (2011) 489–496.
  • [103] M. Patterson, R. D. Reitz, Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission, SAE Technical Paper 980131.
  • [104] L. Ricart, J. Xin, G. Bower, R. D. Reitz, In-Cylinder Measurement and Modeling of Liquid Fuel Spray Penetration in a Heavy-Duty Diesel Engine, SAE Technical Paper 971591.
  • [105] J. C. Beale, R. D. Reitz, Modeling spray atomization with the KelvinHelmholtz/Rayleigh-Taylor hybrid model, Atomization and Sprays 9 (1999) 623–650.
  • [106] M. Marek, The double-mass model of drop deformation and secondary breakup, Applied Mathematical Modelling 37 (2013) 7919– 7939.
  • [107] M. Pilch, C. A. Erdman, Use of breakup time data and velocity history data to predict the maximum size of stable fragments for accelerationinduced breakup of a liquid drop, International Journal of Multiphase Flow 13 (1987) 741–757.
  • [108] G. I. Taylor, The shape and acceleration of a drop in a high-speed air stream, The Scientific Papers by G. I. Taylor 3 (1963) 457–464.
  • [109] J. A. Nicholls, A. A. Ranger, Aerodynamic shattering of liquid drops, Journal of American Institute of Aeronautics and Astronautics 7 (1969) 285–290.
  • [110] E. A. Ibrahim, H. Q. Yang, A. J. Przekwas, Modeling of spray droplets deformation and breakup, Journal of American Institute of Aeronautics and Astronautics 9 (1993) 652–654.
  • [111] S. Som, D. E. Longman, A. I. Ramírez, S. K. Aggarwal, A comparison of injector flow and spray characteristics of biodiesel with petrodiesel, Fuel 89 (2010) 4014–4024.
  • [112] L. Bravo, C.-B. Kweon, A Review on Liquid Spray Models for Diesel Engine Computational Analysis, Tech. rep. (2014).
  • [113] A. B. Liu, D. Mather, R. D. Reitz, Modeling the Effects of Drop Drag and Breakup on Fuel Sprays, SAE Technical Paper 930072.
  • [114] D. M. Gonzalez, Z. Lian, R. D. Reitz, Modeling Diesel Engine Spray Vaporization and Combustion, SAE Technical Paper 920579.
  • [115] A. B. Chhetri, K. C. Watts, Surface tensions of petro-diesel, canola, jatropha and soapnut biodiesel fuels at elevated temperatures and pressures, Fuel 104 (2013) 704–710.
  • [116] B. Kegl, L. Lešnik, Modeling of macroscopic mineral diesel and biodiesel spray characteristics, Fuel 222 (2018) 810–820.
  • [117] F. Wang, J. Wu, Z. Liu, Surface Tensions of Mixtures of Diesel Oil or Gasoline and Dimethoxymethane, Dimethyl Carbonate, or Ethanol, Energy Fuels 20 (2006) 2471–2474.
  • [118] T. Bohl, G. Tian, A. Smallbone, A. P. Roskilly, Macroscopic spray characteristics of next-generation bio-derived diesel fuels in comparison to mineral diesel, Applied Energy 186 (2017) 562–573.
  • [119] E. A. Melo-Espinosa, Y. Sánchez-Borroto, M. Errasti, R. PilotoRodrígueza, R. Sierens, J. Roger-Riba, A. Christopher-Hansen, Surface Tension Prediction of Vegetable Oils Using Artificial Neural Networks and Multiple Linear Regression, Energy Procedia 57 (2014) 886–895.
  • [120] Z. Feng, C. Zhan, C. Tang, K. Yang, Z. Huang, Experimental investigation on spray and atomization characteristics of diesel/gasoline/ethanol blends in high pressure common rail injection system, Energy 112 (2016) 549–561.
  • [121] S. N. Sahasrabudhe, V. Rodriquez-Martinez, M. O’Meara, B. E. Farkas, Density, viscosity, and surface tension of five vegetable oils at elevated temperatures: Measurement and modeling, International Journal of Food Properties 20 (2017) 1965–1981.
  • [122] W. Zhao, L. Fan, Q. Dong, X. Ma, Study of Fuel Temperature Dynamic Characteristics for Diesel Engine Combination Electronic Unit Pump, Journal of Marine Science and Technology 25 (2017) 220–229.
  • [123] N. Ashgriz, J. Y. Poo, Coalescence and separation in binary collisions of liquid drops, Journal of Fluid Mechanics 221 (1990) 183–204.
  • [124] O. O. Taskiran, M. Ergeneman, Trajectory based droplet collision model for spray modeling, Fuel 115 (2014) 896–900.
  • [125] G. H. Ko, H. S. Ryou, Droplet collision processes in an inter-spray impingement system, Journal of Aerosol Science 36 (2005) 1300– 1321.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e7d637b7-cd3b-40d0-a354-62c47cfa7775
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.