Warianty tytułu
Języki publikacji
Abstrakty
Additive manufacturingis gaining interest for printing of noble metals. In this study, aerosol jet printingwas applied to fabricate traces from commercialsilver nanoparticleink. A self-built three dimensional printing machine was used without or with in-line substrate heating. A conductive traces were printed on flexible polyimide substrates. Subsequently, sintering was conducted by furnace or near-infrared source. Examination of the sample using scanning electron and atomic force microscopy revealed the existence of both micro-and nanoscale pores in the structure. Local open porosity, aerosol extensive spatter and wide porous overspray were key defects found in samples printed without substrate heating. All the features affect the properties and reliability of silver prints.In-line process heating increased the concentration of nanoparticles and limited defects formation. What is more, the width of traces decreased from 31 µm to 19 µm with simultaneous thickness increase from 1.2 to 5.5 µm due to substrate heating. The final structure was influenced by sintering method and its time. Elongated time of sintering decreased porosity and roughness of the printed traces. Nevertheless,IR sintering provided the smoothest sample surface with lowest Sa roughness of 16 nm,and significantly improved bonding of aggregates. What is more, the printed structure had a measured sheet resistance of 8.3×10−2Ω/□.
Czasopismo
Rocznik
Tom
Strony
art. no. 180012
Opis fizyczny
Bibliogr. 73 poz., rys., tab., wykr.
Twórcy
autor
- Wroclaw University of Science and Technology Faculty of Mechanical Engineering, Poland, marcin.winnicki@pwr.edu.pl
autor
- Wroclaw University of Science and Technology Faculty of Mechanical Engineering, Poland, wojciech.lapa@pwr.edu.pl
autor
- Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Poland, bartosz.swiadkowski@pwr.edu.pl
Bibliografia
- 1. Agarwala S, Goh G L, Yeong W Y. Optimizing aerosol jet printing process of silver ink for printed electronics. IOP ConferenceSeries: Materials Science and Engineering 2017; 191(1): 012027, https://doi.org/10.1088/1757-899X/191/1/012027.
- 2. Al-Halhouli A, Qitouqa H, Alashqar A, Abu-Khalaf J. Inkjet printing for the fabrication of flexible/stretchable wearable electronic devices and sensors. Sensor Review 2018; 38(4): 438–452, https://doi.org/10.1108/SR-07-2017-0126.
- 3. Andritsos K, Theodorakos I, Zacharatos F et al. Conformal laser printing and laser sintering of Ag nanoparticle inks: a digital approach for the additive manufacturing of micro-conductive patterns on patterned flexible substrates. Virtual and Physical Prototyping 2023; 18(1): e2138462, https://doi.org/10.1080/17452759.2022.2138462.
- 4. Anyfantakis M, Geng Z, Morel M et al. Modulation of the Coffee-Ring Effect in Particle/Surfactant Mixtures: the Importance of Particle–Interface Interactions. Langmuir 2015; 31(14): 4113–4120, https://doi.org/10.1021/acs.langmuir.5b00453.
- 5. Anyfantakis M, Geng Z, Morel M et al. Modulation of the Coffee-Ring Effect in Particle/Surfactant Mixtures: the Importance of Particle–Interface Interactions. Langmuir 2015; 31(14): 4113–4120, https://doi.org/10.1021/acs.langmuir.5b00453.
- 6. Arsenov P V, Efimov A A, Ivanov V V. Comparison of Thermal and Electrical Sintering of Aerosol Silver Nanoparticles in Process of Aerosol Jet Printing. Key Engineering Materials 2020; 834: 10–15, https://doi.org/10.4028/www.scientific.net/KEM.834.10.
- 7. Bahadur N M, Furusawa T, Sato M et al. Fast and facile synthesis of silica coated silver nanoparticles by microwave irradiation. Journal of Colloid and Interface Science 2011; 355(2): 312–320, https://doi.org/10.1016/j.jcis.2010.12.016.
- 8. Bandodkar A J, Jeerapan I, You J-M et al. Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability. Nano Letters 2016; 16(1): 721–727, https://doi.org/10.1021/acs.nanolett.5b04549.
- 9. Beedasy V, Smith P J. Printed Electronics as Prepared by Inkjet Printing. Materials 2020; 13(3): 704, https://doi.org/10.3390/ma13030704.
- 10. Caputo D, de Cesare G, Lo Vecchio N et al. Polydimethylsiloxane material as hydrophobic and insulating layer in electrowetting-on-dielectric systems. Microelectronics Journal 2014; 45(12): 1684–1690, https://doi.org/10.1016/j.mejo.2014.05.016.
- 11. Chen H, Dai F, Hu M et al. Heat-resistant polyimides with low CTE and water absorption through hydrogen bonding interactions. Journal of Polymer Science 2021; 59(17): 1942–1951, https://doi.org/10.1002/pol.20210305.
- 12. Chen Y-D, Nagarajan V, Rosen D W et al. Aerosol jet printing on paper substrate with conductive silver nano material. Journal of Manufacturing Processes 2020; 58: 55–66, https://doi.org/10.1016/j.jmapro.2020.07.064.
- 13. Chen Y-D, Nagarajan V, Rosen D W et al. Aerosol jet printing on paper substrate with conductive silver nano material. Journal of Manufacturing Processes 2020; 58: 55–66, https://doi.org/10.1016/j.jmapro.2020.07.064.
- 14. Das R, Nath S S, Chakdar D et al. Synthesis of silver nanoparticles and their optical properties. Journal of Experimental Nanoscience 2010; 5(4): 357–362, https://doi.org/10.1080/17458080903583915.
- 15. Fu L-M, Hsu J-H, Shih M-K et al. Process Optimization of Silver Nanoparticle Synthesis and Its Application in Mercury Detection. Micromachines 2021; 12(9): 1123, https://doi.org/10.3390/mi12091123.
- 16. Gramlich G, Huber R, Häslich F et al. Process considerations for Aerosol-Jet printing of ultra fine features. Flexible and Printed Electronics 2023; 8(3): 035002, https://doi.org/10.1088/2058-8585/ace3d8.
- 17. Granbohm H, Larismaa J, Ali S et al. Control of the Size of Silver Nanoparticles and Release of Silver in Heat Treated SiO2-Ag Composite Powders. Materials 2018; 11(1): 80, https://doi.org/10.3390/ma11010080.
- 18. Gu W, Yuan W, Zhong T et al. Fast near infrared sintering of silver nanoparticle ink and applications for flexible hybrid circuits. RSC Advances 2018; 8(53): 30215–30222, https://doi.org/10.1039/C8RA04468F.
- 19. Halonen E, Viiru T, Ostman K et al. Oven Sintering Process Optimization for Inkjet-Printed Ag Nanoparticle Ink. IEEE Transactions on Components, Packaging and Manufacturing Technology 2013; 3(2): 350–356, https://doi.org/10.1109/TCPMT.2012.2226458.
- 20. Hassan G, Bae J, Lee C H. Ink-jet printed transparent and flexible electrodes based on silver nanoparticles. Journal of Materials Science: Materials in Electronics 2018; 29(1): 49–55, https://doi.org/10.1007/s10854-017-7886-2.
- 21. Hauf K, Koos E. Structure of capillary suspensions and their versatile applications in the creation of smart materials. MRS Communications 2018; 8(2): 332–342, https://doi.org/10.1557/mrc.2018.28.
- 22. Hoey J M, Lutfurakhmanov A, Schulz D L, Akhatov I S. A Review on Aerosol-Based Direct-Write and Its Applications for Microelectronics. Journal of Nanotechnology 2012; 2012: e324380, https://doi.org/10.1155/2012/324380.
- 23. Ivanišević I, Kassal P, Milinković A et al. Combined Chemical and Thermal Sintering for High Conductivity Inkjet-printed Silver Nanoink on Flexible Substrates. Chemical & biochemical engineering quarterly 2019; 33(3): 377–384, https://doi.org/10.15255/CABEQ.2019.1585.
- 24. Jiao L, Du Z, Dai X et al. Multifunctional polyimide films with superheat-resistance, low coefficient of thermal expansion and fluorescence performance. Polymer 2022; 247: 124792, https://doi.org/10.1016/j.polymer.2022.124792.
- 25. Jiao L, Luo F, Du Z et al. Ultra-high Tg and ultra-low CTE polyimide films based on tunable interchain crosslinking. Reactive and Functional Polymers 2022; 181: 105449, https://doi.org/10.1016/j.reactfunctpolym.2022.105449.
- 26. Kajzer W, Jaworska J, Jelonek K et al. Corrosion resistance of Ti6Al4V alloy coated with caprolactone-based biodegradable polymeric coatings. Eksploatacja i Niezawodność – Maintenance and Reliability 2018; 20(1): 30–38, https://doi.org/10.17531/ein.2018.1.5.
- 27. Kang J S, Ryu J, Kim H S, Hahn H T. Sintering of Inkjet-Printed Silver Nanoparticles at Room Temperature Using Intense Pulsed Light. Journal of Electronic Materials 2011; 40(11): 2268–2277, https://doi.org/10.1007/s11664-011-1711-0.
- 28. Keller D J, Jochem K S, Suszynski W J, Francis L F. Near-IR sintering of conductive silver nanoparticle ink with in situ resistance measurement. Journal of Coatings Technology and Research 2019; 16(6): 1699–1705, https://doi.org/10.1007/s11998-019-00268-5.
- 29. Koos E. Capillary suspensions: Particle networks formed through the capillary force. Current Opinion in Colloid & Interface Science 2014; 19(6): 575–584, https://doi.org/10.1016/j.cocis.2014.10.004.
- 30. Kotnarowska D, Żabińska A. Influence of aqueous sodium chloride solutions on operational properties of epoxy coatings. Eksploatacja i Niezawodność – Maintenance and Reliability 2022; 24(4): 629–640, https://doi.org/10.17531/ein.2022.4.4.
- 31. Krzeminski J, Blicharz B, Skalski A et al. Photonic curing of silver paths on 3D printed polymer substrate. Circuit World 2019; 45(1): 9–14, https://doi.org/10.1108/CW-11-2018-0084.
- 32. Kulkarni P, Baron P A, Willeke K. Introduction to Aerosol Characterization. Aerosol Measurement, John Wiley & Sons, Ltd: 2011: 1–13, https://doi.org/10.1002/9781118001684.ch1.
- 33. Kumar R, Shin J, Yin L et al. All-Printed, Stretchable Zn-Ag2O Rechargeable Battery via Hyperelastic Binder for Self-Powering Wearable Electronics. Advanced Energy Materials 2017; 7(8): 1602096, https://doi.org/10.1002/aenm.201602096.
- 34. Lapa W, Winnicki M, Orłowska K. Investigation of aerosol droplets diameter generated in aerosol jet printing. Materials Science-Poland 2022; 40(4): 78–90, https://doi.org/10.2478/msp-2022-0046.
- 35. Laurent Ph, Stoukatch S, Dupont F, Kraft M. Electrical characterization of Aerosol Jet Printing (AJP) deposited conductive silver tracks on organic materials. Microelectronic Engineering 2018; 197: 67–75, https://doi.org/10.1016/j.mee.2018.06.002.
- 36. Liang S, Liu J. Colorful liquid metal printed electronics. Science China Technological Sciences 2018; 61(1): 110–116, https://doi.org/10.1007/s11431-017-9116-9.
- 37. Lin W-H, Ouyang F-Y. Electromigration Behavior of Screen-Printing Silver Nanoparticles Interconnects. JOM 2019; 71(9): 3084–3093, https://doi.org/10.1007/s11837-019-03627-0.
- 38. Lopes A J, Lee I H, MacDonald E et al. Laser curing of silver-based conductive inks for in situ 3D structural electronics fabrication in stereolithography. Journal of Materials Processing Technology 2014; 214(9): 1935–1945, https://doi.org/10.1016/j.jmatprotec.2014.04.009.
- 39. Lopes A J, MacDonald E, Wicker R B. Integrating stereolithography and direct print technologies for 3D structural electronicsfabrication. Rapid Prototyping Journal 2012; 18(2): 129–143, https://doi.org/10.1108/13552541211212113.
- 40. Lukacs P, Pietrikova A, Cabuk P. Dependence of electrical resistivity on sintering conditions of silver layers printed by InkJet printing technology. Circuit World 2017; 43(2): 80–87, https://doi.org/10.1108/CW-02-2017-0008.
- 41. Mavuri A, Mayes A G, Alexander M S. Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size. Materials 2019; 12(14): 2277, https://doi.org/10.3390/ma12142277.
- 42. McKibben N, Ryel B, Manzi J et al. Aerosol jet printing of piezoelectric surface acoustic wave thermometer. Microsystems & Nanoengineering 2023; 9(1): 1–12, https://doi.org/10.1038/s41378-023-00492-5.
- 43. Mo L, Guo Z, Yang L et al. Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics. International Journal of Molecular Sciences 2019; 20(9): 2124, https://doi.org/10.3390/ijms20092124.
- 44. Mościcki A, Smolarek-Nowak A, Felba J, Kinart A. Ink for Ink-Jet Printing of Electrically Conductive Structures on Flexible Substrates with Low Thermal Resistance. Journal of Electronic Materials 2017; 46(7): 4100–4108, https://doi.org/10.1007/s11664-017-5320-4.
- 45. Naviroj M, Voorhees P W, Faber K T. Suspension-and solution-based freeze casting for porous ceramics. Journal of Materials Research 2017; 32(17): 3372–3382, https://doi.org/10.1557/jmr.2017.133.
- 46. Nguyen P Q M, Yeo L-P, Lok B-K, Lam Y-C. Patterned Surface with Controllable Wettability for Inkjet Printing of Flexible Printed Electronics. ACS Applied Materials & Interfaces 2014; 6(6): 4011–4016, https://doi.org/10.1021/am4054546.
- 47. Park J, Kang H J, Shin K-H, Kang H. Fast sintering of silver nanoparticle and flake layers by infrared module assistance in large area roll-to-roll gravure printing system. Scientific Reports 2016; 6(1): 34470, https://doi.org/10.1038/srep34470.
- 48. Park J D, Lim S, Kim H. Patterned silver nanowires using the gravure printing process for flexible applications. Thin Solid Films 2015; 586: 70–75, https://doi.org/10.1016/j.tsf.2015.04.055.
- 49. Parupelli S K, Desai S. Hybrid additive manufacturing (3D printing) and characterization of functionally gradient materials via in situ laser curing. The International Journal of Advanced Manufacturing Technology 2020; 110(1): 543–556, https://doi.org/10.1007/s00170-020-05884-9.
- 50. Pham-Van H, Tran-Phan-Thuy L, Tran-Manh C et al. Two-Dimensional Clusters of Colloidal Particles Induced by Emulsion Droplet Evaporation. Nanomaterials 2020; 10(1): 156, https://doi.org/10.3390/nano10010156.
- 51. Polzinger B, Schoen F, Matic V et al. UV-sintering of inkjet-printed conductive silver tracks. 2011 11th IEEE International Conference on Nanotechnology, 2011: 201–204, https://doi.org/10.1109/NANO.2011.6144541.
- 52. Reitelshöfer S, Göttler M, Schmidt P et al. Aerosol-Jet-Printing silicone layers and electrodes for stacked dielectric elastomer actuators in one processing device. Electroactive Polymer Actuators and Devices (EAPAD) 2016, SPIE: 2016; 9798: 350–358, https://doi.org/10.1117/12.2219226.
- 53. Saleh E, Zhang F, He Y et al. 3D Inkjet Printing of Electronics Using UV Conversion. Advanced Materials Technologies 2017; 2(10): 1700134, https://doi.org/10.1002/admt.201700134.
- 54. Seifert T, Baum M, Roscher F et al. Aerosol Jet Printing of Nano Particle Based Electrical Chip Interconnects. Materials Today: Proceedings 2015; 2(8): 4262–4271, https://doi.org/10.1016/j.matpr.2015.09.012.
- 55. Seiti M, Degryse O, Ferraris E. Aerosol Jet® printing 3D capabilities for metal and polymeric inks. Materials Today: Proceedings 2022; 70: 38–44, https://doi.org/10.1016/j.matpr.2022.08.488.
- 56. Sharif A, Farid N, O’Connor G M. Ultrashort laser sintering of metal nanoparticles: A review. Results in Engineering 2022; 16: 100731, https://doi.org/10.1016/j.rineng.2022.100731.
- 57. Skarżyński K, Krzemiński J, Jakubowska M, Słoma M. Highly conductive electronics circuits from aerosol jet printed silver inks. Scientific Reports 2021; 11(1): 18141, https://doi.org/10.1038/s41598-021-97312-5.
- 58. Sreenilayam S P, McCarthy É, McKeon L et al. Additive-free silver nanoparticle ink development using flow-based Laser Ablation Synthesis in Solution and Aerosol Jet printing. Chemical Engineering Journal 2022; 449: 137817, https://doi.org/10.1016/j.cej.2022.137817.
- 59. Still T, Yunker P J, Yodh A G. Surfactant-Induced Marangoni Eddies Alter the Coffee-Rings of Evaporating Colloidal Drops. Langmuir 2012; 28(11): 4984–4988, https://doi.org/10.1021/la204928m.
- 60. Suhaimi M I, Nordin A N, Ralib A A M et al. Mechanical durability of screen-printed flexible silver traces for wearable devices. Sensing and Bio-Sensing Research 2022; 38: 100537, https://doi.org/10.1016/j.sbsr.2022.100537.
- 61. Sung K-H, Park J, Kang H. Multi-Layer Inkjet Printing of Ag Nanoparticle Inks and Its Sintering with a Near-Infrared System. International Journal of Precision Engineering and Manufacturing 2018; 19(2): 303–307, https://doi.org/10.1007/s12541-018-0037-8.
- 62. Taccola S, da Veiga T, Chandler J H et al. Micro-scale aerosol jet printing of superparamagnetic Fe3O4 nanoparticle patterns. Scientific Reports 2022; 12(1): 1–12, https://doi.org/10.1038/s41598-022-22312-y.
- 63. Tobjörk D, Aarnio H, Pulkkinen P et al. IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 2012; 520(7): 2949–2955, https://doi.org/10.1016/j.tsf.2011.10.017.
- 64. Vaithilingam J, Saleh E, Körner L et al. 3-Dimensional inkjet printing of macro structures from silver nanoparticles. Materials & Design 2018; 139: 81–88, https://doi.org/10.1016/j.matdes.2017.10.070.
- 65. Vandevenne G, Marchal W, Verboven I et al. A study on the thermal sintering process of silver nanoparticle inkjet inks to achieve smooth and highly conducting silver layers. physica status solidi (a) 2016; 213(6): 1403–1409, https://doi.org/10.1002/pssa.201533007.
- 66. Werner C, Godlinski D, Zöllmer V, Busse M. Morphological influences on the electrical sintering process of Aerosol Jet and Ink Jet printed silver microstructures. Journal of Materials Science: Materials in Electronics 2013; 24(11): 4367–4377, https://doi.org/10.1007/s10854-013-1412-y.
- 67. Wilkinson N J, Smith M A A, Kay R W, Harris R A. A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing. The International Journal of Advanced Manufacturing Technology 2019; 105(11): 4599–4619, https://doi.org/10.1007/s00170-019-03438-2.
- 68. Wu K, Hong J, Qi X et al. Screen printing of silver nanoparticles on the source/drain electrodes of organic thin-film transistors. Organic Electronics 2022; 106: 106524, https://doi.org/10.1016/j.orgel.2022.106524.
- 69. Xiaoru Pan, Li D, Guo M et al. Densities and Viscosities of N,N-Dimethylaniline and Mixtures with Methanol, Ethanol, 1-Propanol, and 1-Butanol at 298.15–313.15 K. Russian Journal of Physical Chemistry A 2019; 93(9): 1715–1721, https://doi.org/10.1134/S0036024419090309.
- 70. Yang W, Wang C, Arrighi V. An organic silver complex conductive ink using both decomposition and self-reduction mechanisms in film formation. Journal of Materials Science: Materials in Electronics 2018; 29(4): 2771–2783, https://doi.org/10.1007/s10854-017-8205-7.
- 71. Yu Z, Huang F, Zhang T et al. Effects of different thermal sintering temperatures on pattern resistivity of printed silver ink with multiple particle sizes. AIP Advances 2021; 11(11): 115116, https://doi.org/10.1063/5.0067651.
- 72. Zhang R, Lin W, Moon K, Wong C P. Fast Preparation of Printable Highly Conductive Polymer Nanocomposites by Thermal Decomposition of Silver Carboxylate and Sintering of Silver Nanoparticles. ACS Applied Materials & Interfaces 2010; 2(9): 2637–2645, https://doi.org/10.1021/am100456m.
- 73. https://amepox-mc.pl/ (accessed 23 November 2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e7d0c623-e36b-45c8-8b8d-867e30de6de4