Warianty tytułu
Przygotowanie i właściwości czerwonego pigmentu γ-Ce2S3 współdomieszkowanego Ba2+ i Y3+
Języki publikacji
Abstrakty
In this study, Ba2+-Y3+ co-doped γ-Ce2S3 (abbreviated as γ-[Ba,Y]-Ce2S3) red pigments were synthesized by a co-precipitation method according to the composition of n(Ba)/n(Ce1-xYx) = 0.1 (molar ratio, x = 0, 0.01, 0.03, 0.05, and 0.10 mol). The corresponding vulcanized products, γ-[Ba,Y]-Ce2S3 red pigment (SYx), were prepared at 850 °C for 150 min by using CS2 as a sulphur source. The effect of the Y3+ doping content on the phase composition, chromaticity, and thermal stability of Ba2+-Y3+ co-doped γ-Ce2S3 was systematically investigated by FE-SEM, EDS, XRD, Raman spectroscopy, HR-TEM, XPS, CIELAB colorimeter, and TG-DTA. The results show that a pure γ phase can be obtained for SYx at 850 °C, when x is varied from 0 to 0.05 mol. Whereas new heterogeneous phases, i.e., α-Ce2S3 and BaY2S4, were observed when the Y3+ content was larger than 0.05. As the Y3+ content increased, the band gap of γ-[Ba,Y]-Ce2S3 increased from 2.12 eV to 2.15 eV, which led to a colour change from red to red-orange. The chromaticity value of the pigments was raised from L* = 31.84, a* = 30.95, b* = 23.63 (S.Y0.00) to L* = 36.69, a* = 41.83, b* = 41.00 (S.Y0.01), indicating that the Ba2+-Y3+ co-doping can effectively increase the chromaticity value. The S.Y0.01 sample still presented a pure γ-phase after heat treatment at 440 °C for 10 min in air, which indicated that the Ba2+-Y3+ co-doping successfully increased the thermal stability of the γ-[Ba,Y]-Ce2S3 red pigment.
W niniejszych badaniach, czerwone pigmenty Ba2+-Y3+ γ-Ce2S3 (w skrócie γ-[Ba,Y]-Ce2S3) zostały zsyntetyzowane metodą współstracania zgodnie ze składem n(Ba)/n(Ce1-xYx) = 0,1 (stosunek molowy, x = 0, 0,01, 0,03, 0,05 i 0,10 mol). Odpowiednie produkty wulkanizowane, czerwony pigment γ-[Ba,Y]-Ce2S3 (SYx), wytworzono w 850 °C przez 150 min, stosując CS2 jako źródło siarki. Wpływ zawartości domieszki Y3+ na skład fazowy, chromatyczność i stabilność termiczną γ-Ce2S3 współdomieszkowanego Ba2+-Y3+ był systematycznie badany za pomocą FE-SEM, EDS, XRD, spektroskopii Ramana, kolorymetru HR-TEM, XPS, CIELAB i TG-DTA. Wyniki pokazują, że dla SYx można uzyskać w 850 °C czystą fazę γ, gdy x zmienia się od 0 do 0,05 mola. Podczas gdy nowe heterogeniczne fazy, tj. α-Ce2S3 i BaY2S4, zaobserwowano, gdy zawartość Y3+ była większa niż 0,05. Wraz ze wzrostem zawartości Y3+ pasmo wzbronione γ-[Ba, Y]-Ce2S3 wzrosło z 2,12 eVdo 2,15 eV, co doprowadziło do zmiany koloru z czerwonego na czerwono-pomarańczowy. Wartość chromatyczności pigmentów podniesiono z L* = 31,84, a* = 30,95, b* = 23,63 (S.Y0,00) do L* = 36,69, a* = 41,83, b* = 41,00 (S.Y0.01), wskazując, że współdomieszkowanie Ba2+-Y3+ może skutecznie zwiększyć wartość chromatyczności. Próbka S.Y0.01 nadal wykazywała czystą fazę γ po obróbce cieplnej w 440 °C przez 10 min w powietrzu, co wskazywało, że jednoczesne domieszkowanie Ba2+-Y3+ skutecznie zwiększyło stabilność termiczną czerwonego pigmentu γ-[Ba,Y ]-Ce2S3.
Czasopismo
Rocznik
Tom
Strony
378--388
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute; National Light Industry Key Laboratory of Functional Ceramic Materials; Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, Jingdezhen, 333403, P. R. China
autor
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute; National Light Industry Key Laboratory of Functional Ceramic Materials; Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, Jingdezhen, 333403, P. R. China, lym6329@163.com
autor
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute; National Light Industry Key Laboratory of Functional Ceramic Materials; Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, Jingdezhen, 333403, P. R. China
autor
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute; National Light Industry Key Laboratory of Functional Ceramic Materials; Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, Jingdezhen, 333403, P. R. China
autor
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute; National Light Industry Key Laboratory of Functional Ceramic Materials; Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, Jingdezhen, 333403, P. R. China
autor
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute; National Light Industry Key Laboratory of Functional Ceramic Materials; Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, Jingdezhen, 333403, P. R. China
Bibliografia
- [1] Yu, S. Y., Wang, D. R., Gao, X. L., Su, H. Q.: Effect of the precursor size on the morphologies and properties of γ-Ce2S3 as a pigment, J. Rare Earth., 32, 6, (2014), 540-544.
- [2] Mauricot, R., Gressier, P., Evain, M., Brec, R.: Comparative study of some rare earth sulfides: doped γ-[A]M2S3, (M=La, Ce and Nd, A = Na, K and Ca) and undoped γ -M2S3, (M = La, Ce and Nd), J. Alloy. Compd., 223, 1, (1995), 130-138.
- [3] Stephane, R., Christian, T. J.: Method for preparing a rare earth sulphide comprising an alkaline element, resulting composition and application as colouring pigment, Australian Patent no AU754720B2, 2000.
- [4] Cannio, M., Bondioli F.: Mechanical activation of raw materials in the synthesis of Fe2O3–ZrSiO4 inclusion pigment, J. Eur. Ceram. Soc., 32, 3, (2012), 643-647.
- [5] George, G., Kumari, L. S., Vishnu, V. S., Ananthakumar, S., Reddy M. L. P.: Synthesis and characterization of environmentally benign calcium-doped Pr2Mo2O9 pigments: Applications in coloring of plastics, J. Solid. State. Chem., 181, 3, (2008), 487-492.
- [6] Patrick, M.: Use of coloured pigments based on rare earths sulphurs in plastics, paints, or vanishes, European Patent no EP0203838(A2), 1986.
- [7] Vasilyeva, I. G., Ayupov, B. M., Vlasov, A. A., Malakhov, V. V., Macaudiere, P., Maestro, P.: Color and chemical heterogeneities of γ-[Na]-Ce2S3 solid solutions, J. Alloy. Compd., 268, 1–2, (1998), 72-77.
- [8] Maestro, P., Huguenin, D.: Industrial applications of rare earths: which way for the end of the century, J. Alloy. Compd., 225, 1–2, (1995), 520-528.
- [9] Hirai, S. J., Shimakage, K, Saitou, Y.: Synthesis and Sintering of Cerium (III) Sulfide Powders, J. Am. Ceram. Soc., 81, 1, (1998), 145-151.
- [10] Anders, E., Grevesse., N.: Abundances of the elements: Meteoritic and solar, Geochim. Cosmochim. Ac., 53, 1, (1989), 197-214.
- [11] Fan, X. D., Ding, G. F., Chen, K., Guo, S., You, C. Y., Chen, R. J., Lee, D., Yan, A.: Whole process metallurgical behavior of the high-abundance rare-earth elements LRE (La, Ce, and Y) and the magnetic performance of Nd0.75LRE0.25-Fe-B sintered magnets, Acta Mater., 154, (2018), 343-354.
- [12] Besançon, P.: Teneur en oxygéne et formule exacte d'une famille de composés habituellement appelés “variété β” ou “phase complexe” des sulfures de terres rares, J. Solid State Chem., 7, 2, (1973, 232-240.
- [13] Zhang, S. T., Ye, M. Q., Chen, S. L., Han, A. J., Zang, Y.: Synthesis and characterization of mica/γ-Ce2−xYxS3, composite red pigments with UV absorption and high NIR reflectance, Ceram. Int., 42, 14, (2016) ,16023-16030.
- [14] Perrin, M., Wimmer, E.: Color of pure and alkali-doped cerium sulfide: A local-density-functional study, Phys. Rev. B. Condens. Mat., 54, 4, (1996), 2428-2435.
- [15] Yuan, H. B., Zhang, J. H., Yu, R. J., Su, Q.: Preparation of ternary rare earth sulfide LaxCe2-xS3 as red pigment, J. Rare Earth., 31, 3, (2013), 327-330.
- [16] Zachariasen, W. H.: Crystal chemical studies of the 5f-series of elements. X. Sulfides and oxysulfides, Acta. Crystallogr., 2, (1949), 291-296.
- [17] Romero, S., Mosset, A., Macaudiére, P., Trombe, J. C.: Effect of some dopant elements on the low temperature formation of γ‐Ce2S3, J. Alloy. Compd., 302, 1, (2000), 118-127.
- [18] Cheng, G. H., Zhu, Z. F., Liu, H., Wu, Y. F., Zhu, C. K.: Preparation of SiO2 coated Ce2S3 red pigment with improved thermal stability, J. Rare Earth., 31, 9, (2013),, 891-896.
- [19] Liu, S. G., Li, Y. M., Wang, Z. M., Shen, Z. Y., Xie, Z. X.: Enhanced high temperature oxidization resistance of silica coated γ-Ce2S3 red pigments, Appl. Surf. Sci., 387, (2016), 1147-1153.
- [20] Roméro, S., Mosset, A., Trombe, J. C., Macaudiére, P.: Low-temperature process of the cubic lanthanide sesquisulfides: Remarkable stabilization of the γ-Ce2S3 phase, J. Mater. Chem., 7, 8, (1997), 1541-1547.
- [21] Urones-Garrote, E., Ávila-Brande, D., Varadé-López, R., Fernández-Martínez, F., Otero-Díaz, L. C.: Stabilization of the γ form of the rare earth sesquisulfides at lower temperature by doping with Calcium, Solid State Sci., 14, 7, (2012), 897-902.
- [22] Li, Y. M., Liu, Q., Song, F. S., Wang, Z. M., Shen, Z. Y., Le, S. W.: Effect or Sr2+ doping on the preparation and properties of γ-Ce2S3 red pigment, Appl. Phys. A, 125, (2019), 277-283.
- [23] Luo, X. X., Zhang, M., Ma, L. B., Peng, Y.: Preparation and stabilization of γ-La2S3 at low temperature, J. Rare Earth., 29, 4, (2011), 313-316.
- [24] Aubert, M., Macaudiere, P.: Rare-earth and alkali sulphide method for preparing same and use thereof as a pigment, US Patent no 6221473 B1, 2001.
- [25] Schevciw, O., White, W. B.: The optical absorption edge of rare earth sesquisulfides and alkaline earth - rare earth sulfides, Mater. Res. Bull., 18, 9, (1983), 1059-1068.
- [26] Zhao, Z. Y., Liu, Q. J., Zhu, Z. Q., Zhang, J.: Effect s of S doping on electronic structures and photocatalytic properties of anatase TiO2, Acta. Phys. Sin-ch. Ed., 57, 6, (2008), 3760-3768.
- [27] Ranjith, K. S., Anitha, S., Balusamy, B., Uyar, T.: Nanograined surface shell wall controlled ZnO–ZnS core–shell nanofibers and their shell wall thickness dependent visible photocatalytic properties, Catal. Sci. Technol., 87, 7, (2017), 1167-1180.
- [28] Parchur, A. K., Ningthoujam, R. S.: Behaviour of electric and magnetic dipole transitions of Eu3+, 5D0 → 7F0 and Eu–O charge transfer band in Li+ co-doped YPO4:Eu3+, RSC Adv., 2, (2012), 10859-10868.
- [29] Fu, C. J., Chen, N., Du, N. G. P.: Comparative studies of nickel doping effects at A and B sites of BaTiO3 ceramics on their crystal structures and dielectric and ferroelectric properties, Ceram. Int., 43, 17, (2017), 15927-15931.
- [30] Oka, R., Shobu, Y., Aoyama, F., Tsukimori, T., Masui, T.: Synthesis and characterization of SrY2-xCexO4 as environmentally friendly reddish-brown pigments, RSC Adv., 87, 7, (2017), 55081-55087.
- [31] Sotelo, P., Orr, M., Galante, M. T., Hossain, M. K., Firouzan, F., Vali, A., Li, J., Subramanian, M., Longo, C., Rajeshwar, K., Macaluso, R. T.: Ternary Rare Earth Sulfide CaCe2S4: Synthesis and Characterization of Stability, Structure, and Photoelectrochemical Properties in Aqueous Media, J. Solid State Chem., 262, (2018), 149-155.
- [32] Nobbs, J. H.: Kubelka-Munk Theory and the Prediction of Reflectance, Color. Technol., 15, 1, (2008), 66-75.
- [33] Yu, S. Y., Wang, D. R., Liu, Y., Li, Z., Zhang, X. F., Yang, X. N., Wang, Y. F., Wang, X. J., Su, H. Q.: Preparations and characterizations of γ-Ce2S3@SiO2 pigments from precoated CeO2 with improved thermal and acid stabilities, RSC Adv., 4, 45, (2014), 23653-23657.
- [34] Wu, X. J., Yu, S.Y., Zeng, S. H., Su, H. Q., Wang, Y. H., Cao, Z.: Effect of Pr-Nd compound dopants on performance of red pigment γ-Ce2S3, J. Chin. Rare Earth Soc. (in Chin.), 29, 6, (2011), 714-717.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e7a906db-c3d3-4a27-996b-496665c41340