Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Nr 3 (276) | 43--57
Tytuł artykułu

Non-contact eddy current conductivity measurements as an effective tool for evaluating aluminum alloys in aircraft

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminum alloys (AAs) are pivotal materials in modern aircraft due to their superior mechanical properties and low weight. The structural integrity of these alloys, crucial for aircraft safety, heavily depends on heat treatment processes that alter their mechanical characteristics. Nondestructive evaluation (NDE) techniques, such as eddy current (EC) conductivity measurements, play a vital role in assessing these alloys throughout their lifecycle. EC methods enable the measurement of electrical conductivity, a structure-sensitive parameter that correlates with mechanical properties affected by heat treatments and operational stresses. This paper reviews the application of EC conductivity measurements in the aerospace industry, focusing on their role in assessing AA structural integrity. It discusses how EC methods can penetrate non-conductive coatings, crucial for in-service measurements without surface removal. Recent developments include a novel small-size EC probe and signal processing algorithms aimed at enhancing sensitivity to conductivity changes through dielectric coatings, up to 0.5 mm thick, commonly found in aircraft structures. Key findings include analyses of specific electrical conductivity (SEC) changes in AAs due to heat treatment deviations and long-term operational stresses, crucial for predicting residual life and maintaining safety standards. Case studies on aircraft wing skins and helicopter rotor blades demonstrate the practical application of EC conductivity meters in identifying critical damage zones. The methodology proves effective in evaluating localized degradation based on SEC distributions, thereby enhancing maintenance efficiency and aircraft safety. Overall, this research underscores the significance of EC conductivity measurements in advancing NDE practices for AAs in aircraft applications. The methodologies and findings presented aim to improve safety, durability assessment, and maintenance efficiency in the aerospace industry.
Wydawca

Rocznik
Strony
43--57
Opis fizyczny
Bibliogr. 26 poz., fot., rys.
Twórcy
  • Karpenko Physico-Mechanical Institute of National Academy of Sciences of Ukraine Naukova Str. 5, Lviv, Ukraine, 79060, vuchanin@gmail.com
Bibliografia
  • [1] Megson THG. Aircraft Structures for engineering students. 4th ed. Amsterdam: Elsevier Ltd; 2007.
  • [2] Ostash O, Fedirko V, Uchanin V, Bychkov S, Moliar O, Semenets O, Kravets V, Derecha V. Mekhanika ruinuvannia i mitsnist materialiv [Fracture mechanics and strength of materials], Vol. 5. Strength and durability of airplane materials and structural elements [in Ukrainian]. Lviv: Spolom; 2007.
  • [3] Hagemaier DJ. Nondestructive testing developments in the aircraft industry. Mater Eval. 1991;49(12):1470-1478.
  • [4] Schmidt HJ, Schmidt-Brandecker B, Tober G. Design of modern aircraft structure and the role of NDI. Insight. 2000;42(3):141-147.
  • [5] Ball DL. The Role of Nondestructive Testing in Aircraft Damage Tolerance. Mater Eval. 2003;61(7):814-818.
  • [6] Udpa SS, Moore PO, editors. Nondestructive testing handbook. 3rd ed. Vol. 5, Electromagnetic testing. Columbus (OH): American Society for NDT; 2004.
  • [7] Libby HL. Introduction to Electromagnetic Non-destructive Test Methods. New York: Wiley-Interscience; 1971.
  • [8] Uchanin V. Detection of the fatigue cracks initiated near the rivet holes by Eddy current inspection techniques. Trans Aerospace Res. 2020;1(258):47-58.
  • [9] Rummel WD. Characterization and evaluation of 2014 aluminum alloy by Eddy current conductivity techniques. Mater Eval. 1966;14(6):322-326.
  • [10] Dorofeev A, Ershov R. Fisicheskije osnovy elektromagnitnoj strukturoskopiji [Physical Fundamentals of Electromagnetic Structuroscopy] [in Russian]. Novosibirsk: Nauka; 1985.
  • [11] Naumov NM, Miklyaev PG. Rezistometricheskij nerazruszajuszij control deformiruemych aljuminievych splavov [Resistometric nondestructive testing of deformable aluminum alloys] [in Russian]. Moscow: Metallurgiya; 1974.
  • [12] Hagemaier DJ. Evaluation of heat damage to aluminum aircraft structures. Mater Eval. 1982;40(12):1470-1478.
  • [13] Bakunov AS. Evoliutsija apparatury dlia vichretokovoj strukturoskopiji tsvetnych metallov v Rossiji [Evolution of equipment for eddy current structuroscopy of nonferrous metals in Russia] [in Russian]. Kontrol Diagnostika. 2004;(4):63-64.
  • [14] Morozov M, Tian GY, Withers PJ. Noncontact evaluation of the dependency of electrical conductivity on stress for various Al alloys as a function of plastic deformation and annealing. J Appl Phys. 2010;108(Paper 024909):1-9.
  • [15] Tsai TC, Chuang TH. Relationship between electrical conductivity and stress corrosion cracking susceptibility of Al 7075 and Al7475 alloys. Corrosion. 1996;52(6):414-416.
  • [16] Starink MJ, Li XM. A model for the electrical conductivity of peak-aged and overaged Al-Zn-Mg-Cu alloys. Metall Mater Trans A. 2003;34A:899-907.
  • [17] Zhi LI, Bai Xiong, Yong Zhang, Bao Zhu, Feng Wang. Microstructural evolution of aluminum alloy 7B04 thick plate by various thermal treatments. Trans Nonferrous Met Soc China. 2008;18(1):40-45.
  • [18] Zaid HR, Hatab AM, Ibrahim AMA. Properties enhancement of Al-Zn-Mg-Cu alloy by retrogression and re-aging heat treatment. J Mining Metallurgy B Metall. 2011;47(1):31-35.
  • [19] Tsai TC, Chuang TH. Relationship between electrical conductivity and stress corrosion cracking susceptibility of Al 7075 and Al7475 alloys. Corrosion. 1996;52(6):414-416.
  • [20] Ostash O, Andreiko I, Holovatyuk Y. Degradation of materials and fatigue durability of aircraft constructions after long-term operation. Mater Sci. 2006;42(4):427-439.
  • [21] Uchanin V, Ostash O. Development of electromagnetic NDT methods for structural integrity assessment. Procedia Struct Integrity. 2019;16:192-197.
  • [22] Uchanin V, Rybachuk V, Kulynych Y. Vichrostrumovyj sposib vyznachennja parametriv anizotropiji nemagnitnych materialiv [Eddy current method for measurement of parameters of electrical conductivity anisotropy of nonferromagnetic materials [in Ukrainian]. Ukrainian Patent No. 138680. 2019 Dec 10. Bul. No. 23.
  • [23] Ostash O, Uchanin V, Andreiko I, Holovatyuk Y. Sposib modeljuvannja degradatcij konstuktsionnych meterialiv v obj’ktach dovgotryvaloji ekspluatatciji [Method for simulation of the structural materials degradation in long-term exploited objects] [in Ukrainian]. Ukrainian Patent No. 69091. 2012 Apr 25. Bul. No. 8.
  • [24] Ostash O, Andrejko I, Markashova L, et al. Vplyv tryvoloji ekspluatatsiji na strukturu i fiziko-mekhanichni vlastyvosti aluminievych splaviv type D16 i V95 [Influence of long-term operation on structure and physico-mechanical properties of aluminium alloys of D16 and B95 type] [in Ukrainian]. Physico-chem Mech Mater. 2013;49(1):18-27.
  • [25] Ostash O, Uchanin V, Semenets O, et al. Sposib monitoryngu stupehja lokaknoji degradatsiji materialiv tryvalo ekpluatovanych aviatsijnych konstruktsij [Method of monitoring of local materials degradation in long-term exploited aircraft structures] [in Ukrainian]. Ukrainian Patent No. 113736. 2017 Feb 10. Bul. No. 3.
  • [26] Uchanin V. Sposib vymirjuvannja elektroprovidnosti niemagnitnych materialiv [Method for measurement of electrical conductivity of nonmagnetic materials] [in Ukrainian]. Ukrainian Patent No. 98206. 2012 Apr 25. Bul. No.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e74da4ab-002e-45a1-ab06-ca4424bdae56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.