Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Vol. 72, no. 2 | 565--578
Tytuł artykułu

Replacement of the part of gravity model and of remaining dynamic models by empirical accelerations in the fit processes of a low-Earth satellite orbit and factors limiting their accuracy

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work contains the results of calculations performed to prove the ability of estimated orbital parameters for the replacement of dynamic models in the orbit determination of a sample low-Earth-orbiting satellite. The obtained solutions include two cases of the absorption of dynamic models. In the first case, the contribution of dynamic models, apart from the gravity field, was absorbed, i.e., the satellite motion was described by the gravity field and estimated parameters. In the second case, the contributions of all dynamic models, including the gravity field, were absorbed. For the gravity field model, the absorption concerned its selected parts. In this case, the satellite motion was modeled only by the gravity model truncated to different degrees and orders and an appropriate set of orbital parameters. In both aforementioned cases, the initial conditions were also improved. Cartesian coordinates of the Gravity Field and Steady-State Ocean Circulation Explorer Mission satellite along selected reference arcs of the official reduced-dynamic orbit served as pseudo-observations in this study. The orbital parameters, also known as empirical accelerations, were determined using the least-squares method by a dedicated orbital package. The results were presented and compared in the form of the root-mean-square (RMS) values of the differences between the estimated orbits and the reference orbits, as well as the corresponding values of the obtained empirical accelerations for selected variants of solutions. The obtained accuracy of the process of the fit of the satellite orbit expressed by the corresponding RMS values, reached a millimeter level. For selected typical solutions, the distribution of residuals and power spectra are presented with an indication of characteristic errors: random and systematic periodic components. Key factors influencing the obtained fit accuracies of estimated orbits are given. Contributions of these factors in the error budget of fits of estimated orbits are also presented. Additionally, in the fit process, the performance of selected gravity models coming from different years is compared to assess the impact of gravity field errors on the results of aforementioned process.
Wydawca

Czasopismo
Rocznik
Strony
565--578
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Department of Geodesy, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland, altair@uwm.edu.pl
Bibliografia
  • 1. Bobojć A, Drożyner A (2011) GOCE satellite orbit in aspect of selected gravitational perturbations. Acta Geophys 59(2):428-452. https:// doi.org/10.2478/s11600-010-0052-3
  • 2. Bock H, Jäggi A, Meyer U, Visser P, Van den Ijssel J, Van Helleputte T, Heinze M, Hugentobler U (2011) GPS-derived orbits for the GOCE satellite. J Geodesy 85(11):807-818. https://doi.org/10. 1007/s00190-011-0484-9
  • 3. Bock H, Jäggi A, Beutler G, Meyer U (2014) GOCE: precise orbit determination for the entire mission. J Geodesy 88(11):1047-1060. https://doi.org/10.1007/s00190-014-0742-8
  • 4. Chen Q, Shen Y, Francis O, Chen W, Zhang X, Hsu H (2018) Tongji-Grace02s and Tongji-Grace02k: high-precision static GRACE-Only global earth’s gravity field models derived by refined data processing strategies. J Geophys Res: Solid Earth 123(7):6111-6137. https://doi.org/10.1029/2018JB015641
  • 5. Chen J, Zhang X, Chen Q, Shen Y, Nie Y (2022) Static gravity field recovery and accuracy analysis based on reprocessed GOCE level 1b gravity gradient observations, EGU general assembly 2022, Vienna, Austria, 23-27 May 2022, EGU22-6771. https://doi. org/10.5194/egusphere-egu22-6771
  • 6. Drinkwater M, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first earth explorer core mission. Space Sci Rev 108:419-432. https://doi.org/10.1023/A:1026104216284
  • 7. Drożyner A (1995) Determination of orbits with Toruń orbit processor system. Adv Space Res 16(12):93-95. https://doi.org/10.1016/ 0273-1177(95)98788-P
  • 8. ESA (2010) GOCE level 2 product data handbook. European GOCE Gravity Consortium. ESA Tech. Note GO-MA-HPF-GS-0110, European Space Agency, Noordwijk
  • 9. Goiginger H, Höck E, Rieser D, Mayer-Guerr T, Maier A, Krauss S, Pail R, Fecher T, Gruber T, Brockmann J, Krasbutter I, Schuh W, Jaeggi A, Prange L, Hausleitner W, Baur O, Kusche J (2011) The combined satellite-only global gravity field model GOCO02S-presented at the 2011 General Assembly of the European Geosciences Union, Vienna, Austria, April 4-8
  • 10. Ince E, Barthelmes F, Reißland S, Elger K, Förste C, Flechtner F, Schuh H (2019) ICGEM-15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth Syst Sci Data 11:647-674. https://doi.org/ 10.5194/essd-11-647-2019
  • 11. Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling of low earth satellites using the global positioning system. J Geod 80:47-60. https://doi.org/10.1007/s00190-006-0029-9
  • 12. Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39:1612-1619. https://doi. org/10. 1016/j.asr.2007.03.012
  • 13. Kang Z, Nagel P, Pastor R (2003) Precise orbit determination for GRACE. Adv Space Res 31(8):1875-1881. https://doi.org/10. 1016/S0273-1177(03)00159-5
  • 14. Kang Z, Bettadpur S, Nagel P, Save H, Poole S, Pie N (2020) GRACE-FO precise orbit determination and gravity recovery. J Geodesy 94:85. https://doi.org/10.1007/s00190-020-01414-3
  • 15. Kvas A, Behzadpour S, Ellmer M, Klinger B, Strasser S, Zehentner N, Mayer-Gürr T (2019) ITSG-Grace2018: overview and evaluation of a new GRACE-only gravity field time series. J Geophys Research: Solid Earth 124(8):7519-9453. https://doi.org/10.1029/ 2019JB017415
  • 16. Lemoine F, Kenyon S, Factor J, Trimmer R, Pavlis N, Chinn D, Cox C, Klosko S, Luthcke S, Torrence M, Wang Y, Williamson R, Pavlis E, Rapp R, Olson T (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential ModelEGM96; NASA Technical Paper NASA/ TP1998206861, Goddard Space Flight Center, Greenbelt, USA
  • 17. Lerch F, Wagner C, Smith D, Sandson M, Brownd J, Richardson J (1972) Gravitational field models for the earth (GEM1&2); Report X55372146, Goddard Space Flight Center, Greenbelt/Maryland
  • 18. Lerch F, Klosko S, Laubscher R, Wagner C (1979) Gravity Model Improvement Using Geos3 (GEM9 and 10). J Geophys Res 84(B8):3897-3916
  • 19. Lundquist C, Veis G (1966) Geodetic Parameters for a 1966 Smitho-nian Institution Standard Earth; Special Report No. 200, Smitho-nian Astrophysical Observatory, Cambridge/Mass
  • 20. Mao X, Arnold D, Girardin V, Villiger A, Jäggi A (2021) Dynamic GPS-based LEO orbit determination with 1 cm precision using the Bernese GNSS software. Adv Space Res 67(2):788-805. https:// doi.org/10.1016/j.asr.2020.10.012
  • 21. Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-Grace2010: the new GRACE gravity field release computed in Bonn. Geophys Res Abstr 12:2446
  • 22. Mayer-Gürr:T, Zehentner N, Klinger B, Kvas A (2014) ITSG-Grace2014: a new GRACE gravity field release computed in Graz. GRACE Science Team Meeting 2014, Potsdam
  • 23. Moore P, Wang J (2005) On reduced dynamic orbits for altimetric satellites. Adv Space Res 36(3):445-453. https://doi.org/10.1016/j. asr.2005.04.059
  • 24. Novak A, Zajdel R, Sośnica K (2023) Optimization of orbit prediction strategies for GNSS satellites. Acta Astronaut 209:132-145. https://doi.org/10.1016/j.actaastro.2023.04.040
  • 25. Pail R, Bruinsma S, Migliaccio F, Foerste C, Goiginger H, Schuh W, Hoeck E, Reguzzoni M, Brockmann J, Abrikosov O, Veicherts
  • 26. M, Fecher T, Mayrhofer R, Krasbutter I, Sanso F, Tscherning C (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 81:11. https://doi. org/10.1007/ s00190-011-0467-x
  • 27. Pavlis K, Holmes S, Kenyon S, Factor J (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res: Solid Earth 17:B04406. https://doi.org/10.1029/ 2011JB008916
  • 28. Press W, Teukolsky S, Vetterling W, Flannery B (1992) Numerical recipes in FORTRAN, 2nd edn. University Press, Cambridge
  • 29. Rapp R, Wang Y, Pavlis K (1991) The Ohio state 1991 geopotential and sea surface topography harmonic coefficient models; The Ohio State University, Department of Geodetic Science, Report No. 410, Columbus/Ohio
  • 30. Reigber Ch, Jochmann H, Wünsch J, Petrovic S, Schwinzer P, Barthelmes F, Neumayer KH, König R, Förste Ch, Balmino G, Biancale R, Lemoine JM, Loyer S, Perosanz F (2005) Earth gravity field and seasonal variability from CHAMP. Earth observation with CHAMP-results from 3 years in orbit. Springer, Berlin, pp 25-30
  • 31. Rummel R, Yi W, Stummer C (2011) GOCE Gravitational Gra-diometry. J Geod 85:777-790. https://doi.org/10.1007/ s00190-011-0500-0
  • 32. Schwintzer P, Reigber Ch, Massmann F, Barth W, Raimondo J, Gerstl M, Li H, Biancale R, Balmino G, Moynot B, Lemoine J, Marty J, Boudon Y, Barlier F (1991) A new earth gravity field model in support of ERS-1 and SPOT-2; Final Report to the German Space Agency (DARA) and the French Space Agency (CNES); DGFI München, GRGS Toulouse
  • 33. Tapley B, Watkins M, Ries J, Davis G, Eanes R, Poole S, Rim H, Schutz B, Shum C, Nerem R, Lerch F, Marshall J, Klosko S, Pav-lis N, Williamson R (1996) The Joint Gravity Model 3. J Geophys Res 101(B12):28029-28049
  • 34. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):4. https://doi.org/10.1029/2004G L019920
  • 35. Wang Z, Li Z, Wang L, Wang N, Yang Y, Li R, Zhang Y, Liu A, Yuan H, Hoque M (2022) Comparison of the real-time precise orbit determination for LEO between kinematic and reduced-dynamic modes. Measurement. https://doi.org/10.1016/j.measurement. 2021.110224
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e72e6687-9c04-44e3-9365-82ee46e2f71e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.