Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 3 | 12--24
Tytuł artykułu

Effectiveness of Endophytes Bacteria in Enhancing Floating Treatment Wetland to Treat Textile Wastewater

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research investigated the association of consortium endophyte bacteria from different hosts to enhance the performance of Vetiveria zizanioides in treating textile wastewater using Floating Treatment Wetlands (FTWs). The endophyte bacteria were isolated from the roots of three natural plants (Oryza sativa, Colocasia esculenta, and Alternanthera philoxeroides) contaminated by textile wastewater. The selected isolated endophyte bacteria were subjected to the four FTWs reactors containing the Vetiveria sp. and ran for 30 days in a semi-batch system to evaluate their performance. FTWs reactors-augmented endophyte bacteria could reduce the COD, color, and heavy metals in textile wastewater. The highest removal efficiencies of COD (74%) and color (91%) were observed in FK2 (vegetated control) and F4 reactor, respectively. The addition of endophyte bacteria increased the heavy metal reductions of Pb (52%) and Cd (33%) in reactors of F3 and F4, respectively. This study exhibited that the consortium endophyte bacteria isolated from the contaminated plants could improve the FTWs reactor performance. Finally, they reduce the plant stresses in the contaminated wastewater by increasing the plant biomass in roots and shoots. These findings reveal that the consortium of natural endophyte bacteria from different hosts does not inhibit their function and association with the other host plant, but they contribute positive responses to the plant growth and pollutant degradation.
Wydawca

Rocznik
Strony
12--24
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil Engineering and Planning, Universitas Islam Indonesia. Jl. Kaliurang Km 14.5, Yogyakarta, 55584, Indonesia, joni.af@uii.ac.id
  • Department of Environmental Engineering, Faculty of Civil Engineering and Planning, Universitas Islam Indonesia. Jl. Kaliurang Km 14.5, Yogyakarta, 55584, Indonesia, awaluddin@uii.ac.id
  • Master Degree Program, Department of Environmental Engineering, Faculty of Civil Engineering and Planning, Universitas Islam Indonesia, Jl. Kaliurang Km 14.5, Yogyakarta, 55584, Indonesia, nurunnailis@gmail.com
autor
  • Research Center for Applied Microbiology, National Research and Innovation Agency. Jl. Raya Bogor Km 46, Cibinong, Bogor, 16911, Indonesia, isa.nuryana@gmail.com
  • Department of Civil and Environmental Engineering, University of California, Berkeley. USA. CA 94720, nuha@berkeley.edu
  • Department of Environmental Engineering, Faculty of Civil Engineering and Planning, Universitas Islam Indonesia. Jl. Kaliurang Km 14.5, Yogyakarta, 55584, Indonesia, annisa.lathifah@uii.ac.id
Bibliografia
  • 1. Adegoke, K.A., Bello, O.S. 2015. Dye sequestration using agricultural wastes as adsorbents. Water Resources and Industry, 12, 8–24. https://doi.org/10.1016/j.wri.2015.09.002
  • 2. Adeleke, B.S., Babalola, O.O., & Glick, B.R. 2021. Plant growth-promoting root-colonizing bacterial endophytes. Rhizosphere, 20. https://doi.org/10.1016/J.RHISPH.2021.100433
  • 3. Afzal, I., Khan Shinwari, Z., Sikandar, S., Shahzad, S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. https://doi.org/10.1016/j.micres.2019.02.001
  • 4. Al-Tohamy, R., Ali, S.S., Li, F., Okasha, K.M., Mahmoud, Y.A.G., Elsamahy, T., Jiao, H., Fu, Y., Sun, J. 2022. A critical review on the treatment of dyecontaining wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
  • 5. Ashraf, S., Naveed, M., Zahir, Z.A., Afzal, M., Rehman, K. 2018. Plant-endophyte synergism in constructed wetlands enhances the remediation of tannery effluent. Water Science and Technology, 77(5), 1262–1270. https://doi.org/10.2166/ wst.2018.004
  • 6. Azanaw, A., Birlie, B., Teshome, B., Jemberie, M. 2022. Textile effluent treatment methods and ecofriendly resolution of textile wastewater. Case Studies in Chemical and Environmental Engineering, 6. https://doi.org/10.1016/J.CSCEE.2022.100230
  • 7. Badejo, A.A., Omole, D.O., Ndambuki, J.M. 2018. Municipal wastewater management using Vetiveria zizanioides planted in vertical flow constructed wetland. Applied Water Science, 8(4), 1–6. https://doi.org/10.1007/s13201-018-0756-0
  • 8. Begum, N., Afzal, S., Zhao, H., Lou, L., Cai, Q. 2018. Shoot endophytic plant growth-promoting bacteria reduce cadmium toxicity and enhance switchgrass (Panicum virgatum L.) biomass. Acta Physiologiae Plantarum, 40(9), 170. https://doi.org/10.1007/s11738-018-2737-1
  • 9. Benny, C.K., Chakraborty, S. 2023. Dyeing wastewater treatment in horizontal-vertical constructed wetland using organic waste media. Journal of Environmental Management, 331(January), 117213. https://doi.org/10.1016/j.jenvman.2023.117213
  • 10. Chandanshive, V.V., Rane, N.R., Gholave, A.R., Patil, S.M., Jeon, B.H., Govindwar, S.P. 2016. Efficient decolorization and detoxification of textile industry effluent by Salvinia molesta in lagoon treatment. Environmental Research, 150, 88–96. https://doi.org/10.1016/j.envres.2016.05.047
  • 11. Crini, G., Lichtfouse, E. 2019. Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145155. https://doi.org/10.1007/s10311-018-0785-9
  • 12. Darajeh, N., Truong, P., Rezania, S., Alizadeh, H., Leung, D.W.M. 2019. Effectiveness of vetiver grass versus other plants for phytoremediation of contaminated water. Journal of Environmental Treatment Techniques, 7(3), 485–500
  • 13. Daud, N.M., Abdullah, S.R.S., Hasan, H.A., Othman, A.R., Ismail, N. ‘Izzati. 2023. Coagulationf locculation treatment for batik effluent as a baseline study for the upcoming application of green coagulants/flocculants towards sustainable batik industry. Heliyon, 9(6), e17284. https://doi.org/10.1016/j.heliyon.2023.e17284
  • 14. Ding, T., Melcher, U. 2016. Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. https:// doi.org/10.1371/journal.pone.0150895
  • 15. Environmental and Forestry Instrument Standardization Agency (BSILHK). (2023). Standard National Indonesia for Water and Wastewater Quality (SNI). https://bsilhk.menlhk.go.id/index.php/produksni/sni-teknologi-pengujian-kualitas-lingkungan/ sni-kualitas-air-dan-air-limbah/
  • 16. Etesami, H., Alikhani, H.A., Hosseini, H.M. 2015. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX, 2, 72–78. https://doi.org/10.1016/j. mex.2015.02.008
  • 17. Fan, M., Liu, Z., Nan, L., Wang, E., Chen, W., Lin, Y., Wei, G. 2018. Isolation, characterization, and selection of heavy metal-resistant and plant growthpromoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiological Research, 217(May 2017), 51–59. https://doi.org/10.1016/j.micres.2018.09.002
  • 18. Fortunato, L., Elcik, H., Blankert, B., Ghaffour, N., Vrouwenvelder, J. 2021. Textile dye wastewater treatment by direct contact membrane distillation: Membrane performance and detailed fouling analysis. Journal of Membrane Science, 636, 119552. https://doi.org/10.1016/j.memsci.2021.119552
  • 19. Guidi Nissim, W., Palm, E., Mancuso, S., Azzarello, E. 2018. Trace element phytoextraction from contaminated soil: a case study under Mediterranean climate. Environmental Science and Pollution Research, 25(9), 9114–9131. https://doi.org/10.1007/ s11356-018-1197-x
  • 20. Gusti Wibowo, Y., Tyaz Nugraha, A., Rohman, A. 2023. Phytoremediation of several wastewater sources using Pistia stratiotes and Eichhornia crassipes in Indonesia. Environmental Nanotechnology, Monitoring and Management, 20(December 2022), 100781. https://doi.org/10.1016/j.enmm.2023.100781
  • 21. Hardoim, P.R., van Overbeek, L.S., Elsas, J.D. van. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16(10), 463–471. https://doi.org/https://doi. org/10.1016/j.tim.2008.07.008
  • 22. Hussain, Z., Arslan, M., Hasan Malik, M., Mohsin, M., Iqbal, S., Afzal, M. 2018. Treatment of the textile industry effluent in a pilot-scale vertical f low constructed wetland system augmented with bacterial endophytes. https://doi.org/10.1016/j. scitotenv.2018.07.163
  • 23. Ijaz, A., Imran, A., Anwar ul Haq, M., Khan, Q.M., Afzal, M. 2016. Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant and Soil, 405(1–2), 179–195. https:// doi.org/10.1007/s11104-015-2606-2
  • 24. Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., Aryal, N. 2022. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8. https://doi.org/10.1016/J. ENVADV.2022.100203
  • 25. Kiamarsi, Z., Kafi, M., Soleimani, M., Nezami, A., Lutts, S. 2020. Conjunction of Vetiveria zizanioides L. and oil-degrading bacteria as a promising technique for remediation of crude oil-contaminated soils. Journal of Cleaner Production, Vol. 253. https://doi.org/10.1016/j.jclepro.2019.119719
  • 26. Kiswanto, K., Rahayu, L.N., Wintah, W. 2019. Pengolahan Limbah Cair Batik Menggunakan Teknologi Membran Nanofiltrasi Di Kota Pekalongan. Jurnal Litbang Kota Pekalongan, 17, 72–82. https://doi.org/10.54911/litbang.v17i0.109
  • 27. Li, Y., Wei, S., Chen, X., Dong, Y., Zeng, M., Yan, C., Hou, L., Jiao, R. 2023. Isolation of cadmiumresistance and siderophore-producing endophytic bacteria and their potential use for soil cadmium remediation. Heliyon, 9(7), e17661. https://doi.org/10.1016/j.heliyon.2023.e17661
  • 28. Moyo, S., Makhanya, B.P., Zwane, P.E. 2022. Use of bacterial isolates in the treatment of textile dye wastewater: A review. Heliyon, 8(6), e09632. https://doi.org/10.1016/j.heliyon.2022.e09632
  • 29. Najam-Us-Sahar, Hussain, A., Mustafa, A., Waqas, R., Ashraf, I., Akhtar, M.F.U.Z. 2017. Effect of textile wastewater on growth and yield of wheat (Triticum aestivum L.). Soil and Environment, 36(1), 28–34. https://doi.org/10.25252/se/17/41133
  • 30. Nanda, S., Mohanty, B., Joshi, R.K. 2019. Endophyte-mediated host stress tolerance as a means for crop improvement. Reference Series in Phytochemistry, 677–701. https://doi.org/10.1007/978-3-319-90484-9_28
  • 31. Nayak, A.K., Panda, S.S., Basu, A., Dhal, N.K. 2018. Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. International Journal of Phytoremediation, 20(7), 682–691. https://doi.org /10.1080/15226514.2017.1413332
  • 32. Nhan, N.T., Luu, T.Le. 2023. Fabrication of novel Ti/SnO2-Nb2O5 electrode in comparison with traditional doping metal oxides for electrochemical textile wastewater treatment. Environmental Technology and Innovation, 32, 103292. https://doi. org/10.1016/j.eti.2023.103292
  • 33. Pivets, B.E. 2001. Phytoremediation of contaminated soils and ground water at hazardous waste sites. In Environmental Protection Agency. https://play.google. com/books/reader?id=fXSugnKAha0C&pg=GBS. PA1&hl=en
  • 34. Prakash, J. 2021. Chapter 5 - Potential application of endophytes in bioremediation of heavy metals and organic pollutants and growth promotion: mechanism, challenges, and future prospects (G. Saxena, V. Kumar, & M.P.B.T.-B. for E. S. Shah (eds.); pp. 91–121). Elsevier. https://doi.org/https:// doi.org/10.1016/B978-0-12-820524-2.00005-5
  • 35. Rahmadyanti, E., Febriyanti, C.P. 2020. Feasibility of constructed wetland using coagulation flocculation technology in batik wastewater treatment. Journal of Ecological Engineering, 21(6), 67–77. https://doi.org/10.12911/22998993/123253
  • 36. Rehman, K., Imran, A., Amin, I., Afzal, M. 2018. Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. Journal of Hazardous Materials, 349, 242–251. https://doi.org/10.1016/j. jhazmat.2018.02.013
  • 37. Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M.-H., Rene, E.R., Firoozbahr, M. 2020. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 143, 138–163. https://doi.org/https://doi. org/10.1016/j.psep.2020.05.034
  • 38. Saratale, R.G., Saratale, G.D., Chang, J.S., Govindwar, S.P. 2011. Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 138–157. https://doi.org/https://doi.org/10.1016/j. jtice.2010.06.006
  • 39. Shahid, M.J., AL-surhanee, A.A., Kouadri, F., Ali, S., Nawaz, N., Afzal, M., Rizwan, M., Ali, B., Soliman, M.H. 2020. Role of Microorganisms in the Remediation of Wastewater in Floating Treatment Wetlands: A Review. Sustainability, 12(14). https:// doi.org/10.3390/su12145559
  • 40. Sharma, P., Kumar, S. 2021. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. Bioresource Technology, 339(May), 125589. https:// doi.org/10.1016/j.biortech.2021.125589
  • 41. Shehzadi, M., Fatima, K., Imran, A., Mirza, M.S., Khan, Q.M., Afzal, M. 2016. Ecology of bacterial endophytes associated with wetland plants growing in textile effluent for pollutant-degradation and plant growth-promotion potentials. Plant Biosystems, 150(6), 1261–1270. https://doi.org/10.1080/11263 504.2015.1022238
  • 42. Singh, R., Singh, P., Singh, R. 2014. Bacterial decolorization of textile azo dye acid orange by staphylococcus hominis RMLRT03. Toxicology International, 21(2), 160–166. https://doi. org/10.4103/0971-6580.139797
  • 43. Sudarshan, S., Harikrishnan, S., RathiBhuvaneswari, G., Alamelu, V., Aanand, S., Rajasekar, A., Govarthanan, M. 2023. Impact of textile dyes on human health and bioremediation of textile industry effluent using microorganisms: current status and future prospects. Journal of Applied Microbiology, 134(2), 1–23. https://doi.org/10.1093/jambio/lxac064
  • 44. Suhartini, S., Pangestuti, M.B., Dewanti, B.S., Hidayat, N. 2019. Textile wastewater treatment: Biodegradability on aerobic and anaerobic process. IOP Conference Series: Earth and Environmental Science, 230(1). https://doi. org/10.1088/1755-1315/230/1/012091
  • 45. Sun, Y., Zhou, P., Zhang, N., Zhang, Z., Guo, Q., Chen, C., Cui, L. 2021. Effects of matrix modification and bacteria amendment on the treatment efficiency of municipal tailwater pollutants by modified vertical flow constructed wetland. Journal of Environmental Management, 281(January), 111920. https://doi.org/10.1016/j.jenvman.2020.111920
  • 46. Tambunan, J.A.M., Effendi, H., Krisanti, M. 2018. Phytoremediating batik wastewater using vetiver Chrysopogon zizanioides L. Polish Journal of Environmental Studies, 27(3), 1281–1288. https://doi. org/10.15244/pjoes/76728.
  • 47. Tara, N., Arslan, M., Hussain, Z., Iqbal, M., Khan, Q.M., Afzal, M. 2019a. On-site performance of f loating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. Journal of Cleaner Production, 217, 541–548. https://doi.org/10.1016/j. jclepro.2019.01.258
  • 48. Tara, N., Iqbal, M., Mahmood Khan, Q., Afzal, M. 2019b. Bioaugmentation of floating treatment wetlands for the remediation of textile effluent. Water and Environment Journal, 33(1), 124–134. https://doi.org/10.1111/wej.12383
  • 49. Wei, F., Shahid, M.J., Alnusairi, G.S.H., Afzal, M., Khan, A., El-Esawi, M. A., Abbas, Z., Wei, K., Zaheer, I. E., Rizwan, M., Ali, S. 2020. Implementation of floating treatment wetlands for textile wastewater management: A review. Sustainability (Switzerland), 12(14), 1–29. https://doi.org/10.3390/su12145801
  • 50. Ye, M., Sun, M., Wan, J., Feng, Y., Zhao, Y., Tian, D., Hu, F., Jiang, X. 2016. Feasibility of lettuce cultivation in sophoroliplid-enhanced washed soil originally polluted with Cd, antibiotics, and antibiotic-resistant genes. Ecotoxicology and Environmental Safety, 124, 344–350. https://doi.org/https:// doi.org/10.1016/j.ecoenv.2015.11.013
  • 51. Yousaf, S., Andria, V., Reichenauer, T.G., Smalla, K., Sessitsch, A. 2010. Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. Journal of Hazardous Materials, 184(1–3), 523–532. https://doi.org/10.1016/j.jhazmat.2010.08.067
  • 52. Zhuang, L., Zhou, S., Wang, Y., Liu, Z., Xu, R. 2011. Cost-effective production of Bacillus thuringiensis biopesticides by solid-state fermentation using wastewater sludge: Effects of heavy metals. Bioresource Technology, 102(7), 4820–4826. https://doi.org/10.1016/j.biortech.2010.12.098
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e6c5aa08-b3d7-4259-846b-de97483b4edc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.