Warianty tytułu
GNSS troposheric delay and its in research on state of atmosphere
Języki publikacji
Abstrakty
Work provides various empirical evidences on need for close cooperation of satellite geodesy and meteorology (and numerical weather prediction). Standard GNSS tropospheric delay products (IGS. EPN) show some inconsistencies, smaller after 2006 but still present (demonstrated by neat statistical analysis). Zenith Tropospheric Delay (ZTD) from GNSS solution (network or PPP) can be separated into hydrostatic part (it is a function of surface atmospheric pressure) and 'wet' part which can be transformed into IPW. Integrated Precipitable Water (or Integrated water Vapour - IWV) - column water vapour in atmosphere is highly interesting parameter of atmosphere. Amount of water vapour (here acquired by geodetic method) is crucial in thermodynamics of atmosphere (e.g. precipitation) and climate processes. Different GNSS solutions (with special case of EPN reprocessing) were verified by aerological techniques. radiosoundings and sun photometer CIMEL. It turns out that crucial problem in this comparisons is station collocation: bias and RMS depends on distance and station height. Permanent GPS station has been set up at Central Geophysical Observatory PAS (Belsk) in years 2009-2012, to carry out calibration campaign: GPS vs. sunphotometer CIMEL CF-318. IPW coming from two versions of GPS solutions (network and PPP) demonstrate deficiencies of IPW comma from sunpotometer technique. Differences were modeled by seasonal and semiannual signal, clearly CIMEL measurements are subject of systematic bias - no-linear function of atmospheric temperature. The same procedure were tried for polar stations, especially at Hornsund (Svalbard). Vertical profiles of atmospheric parameters from numerical weather prediction models can be utilized in the same way as radiosounding. Input fields (so called analysis) and first prognosis steps of model COSMO (in two versions of 14 km and 2.8 km resolution) - basic synoptic tool of Polish Institute of Meteorology and Water Management in Warsaw - were used to obtain both IPW and ZTD. Many factors were taken into account to work out optimal procedure: interpolation of data from model grid for GNSS station, corrections of height (crucial), vertical integration procedure etc. There is only slight degradation of data quality for first prognosis steps and we can get time series of IPW and ZTD with 3 h resolution Two disparate procedures for obtaining ZTD were tried: hydrostatic (only wet part from integration) and complete integration of refractivity profile in vertical direction. The second method gives in comparison with EPN combined solution quite different results for 14 ion resolution model (3 %bias), and 2.8 km resolution (0,5%bias). Use of surface meteorological data retrieved from numerical model for IPW calculation is also presented. Global model GFS (NCEP) was used only for IPW comparisons: results comparable to regional model COSMO. Topospheric delay from numerical weather model can be used in GNSS position solutions (PPP method). Horizontal coordinates estimated in PPP mode with use of COSMO model ZTD are comparable to coordinates obtained when ZTD is estimated. Vertical coordinates show greater scattering but less big outliers in case of ZTD from numerical weather model. Next topic is to analyze parameters of GNSS solutions most affecting ZTD solution: reference system shows more significance than orbits (ultra rapid or final). In the end this work demonstrates that IPW (column water) coming from satellite geodesy solutions reveals features of meteorological parameter: seasonal dependence, weather pattern changes etc. Most important application of long series od IPW of uniform quality is climatology. Work suggests how to search for climatological signal in IPW series.
Słowa kluczowe
Rocznik
Tom
Strony
3--150
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
- Wydział Geodezji i Kartografii
Bibliografia
- 1. Andrews, D.G. (2010). An Introduction to Atmospheric Physics. Second Edition, Cambridge University Press
- 2. Askne, J., H. Nordius (1987). Estimation of tropospheric delay for microvawes from surface weather data, Radio Science, Vol. 22, No.3, pp 379-386
- 3. Baueršima, I., (1983). NAVSTAR/Global Positioning System (GPS), II., Mitteilungen der Satelliten-Beobachtungsstation Zimmerwald, No. 10, Astronomical Institute, University of Berne
- 4. Bevis, M., S. Businger, S. Chiswell, T.A. Herring, R.A. Anthes, C. Rocken, R. Ware, (1994). GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, Journal of Applied Meteorology, Vol. 33, pp 379-386.
- 5. Black, H.D., A. Eisner, (1984). Correcting satellite Doppler data for tropospheric effects, Journal of Geophysical Research, 89(D2), pp. 2616-2626
- 6. Böhm, J., H. Schuh (2004). Vienna mapping functions in VLBI analyses, Geophysical Research Letters, Vol. 31, L01603
- 7. Böhm, J., A. Niell, P. Tregoning, H. Schuh (2006). Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophysical Research Letters, Vol. 33, L07304
- 8. Bosy, J., J. Kaplon,W. Rohm, J. Sierny, T. Hadas (2012). Near real-time estimation of water vapour in the troposphere using ground GNSS and the meteorological data. Ann. Geophys., 30, pp 1379-1391
- 9. Boudouris, G. (1963). On the index of refraction of air the absorption and dispersion of centimeter waves in gases. J Res Natl Bur Stand 67, pp 631-684
- 10. Byun Sung, H., Yoaz E. Bar-Sever, (2009). A new type of troposphere zenith path delay product of the international GNSS service. J Geod 83, pp 367-373
- 11. Chao, C.C., (1972). A model for tropospheric calibration from daily surface ans radiosonde balloon measurement. JPL Technical Memorandum, pp 351-390
- 12. Czarnecki, K. (1998). Geodezja współczesna, Wydawnictwo Wiedza i Życie, Warszawa
- 13. Davis, J.L., T.A. Herring, I.I. Shapiro, A.E. Rogers, G. Elgered, (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci., 20, pp 1593-1607
- 14. Edge, R.C.A., (1962). Report of IAG Special Study Group No. 19 on Electronic Distance Measurement using Ground Instruments
- 15. Essen, L., Froome, K.D., (1951). The Refractive Indices and Dielectric Constants of Air and its Principal Constituents at 24 GHz. Proc. of the Physical Society (London). Section B. 64:862-875
- 16. Goff, J.A., Gratch, S., (1946). Low Pressure Properties of Water from - 160 to 212ºF. Transactions. American Society of Heating and Ventilating Engineers, 52:95-122
- 17. Guerova, G., (2001). COST 716 Short Term Scientific Mission - Assimilation experiment paper presented at COST 716 MC Meeting. 25 June 2001 Norrkoeping, Sweden
- 18. Herring, T.A., (1992). Modelling atmospheric delays in the analysis of space geodetic data, in Symposium on Refraction of Transatmospheric Signals in Geodesy, (edit. by J.C. De Munk, T.A. Spoelstra), pp 157-164, Netherlands Geod Comm Delft
- 19. Hoffmann-Wellenhof, B., Lichtenegger H., Collins J. (1997). GPS Theory and Practice, Fourth. revised edition, Springer Verlag, Wien-New York.
- 20. Hopfield, H.S., (1969). Two-quartic tropospheric refractivity profile for correcting satellite data, Journal of Geophysical Research, 74 (18): 4487-4499
- 21. Hopfield, H.S., (1971). Tropospheric effect on electromagnetically measured range: Prediction from surface weather data. Radio Science, 1971, 6(3): p. 357-367
- 22. Hugentobler U., S. Schaer, P. Fridez (edit.), (2001). Bernese GPS Software Version 4.2, Astronomical Institute University of Bern, pp 515.
- 23. IAG (International Association of Geodesy) (1999). Resolutions, 22nd General Assembly (see http://www.gfu.ku.dk/-iag/resolutions), 19-30 July 1999, Birmingham, UK
- 24. Kruczyk M., J.D. Rogowski, T. Liwosz, (2001). On Accuracy of IPWV Determined from GPS Networks, Reports on Geodesy No 3(58)
- 25. Kruczyk, M., T. Liwosz, J.B. Rogowski, (2004). Some aspects of GPS tropospheric delay behaviour, usefullness and estimation. Reports on Geodesy No.2 (69).
- 26. Kruczyk, M., (2006). Remarks on GPS Tropospheric Delay Products and the or Usefulness. EUREF Publication No. 15, Mitteilungen des Brundesamtes für Kartographie und Geodäsie Band 38, pp. 349-355.
- 27. Kruczyk, M., (2008). Tropospheric delay EPN products and meteorological ZTD and IPW data sources-conformity study, Report on the Symposium of the IAG sub commission for Europe (EUREF), Brussels, Belgium, 18-21 June 2008, EUREF Publication No. 17. Mitteilungen des Bundesamtes für Kartographie und Geodäsie
- 28. Kruczyk, M., (2008). Tropospheric Delay in GNSS and Meteorological ZTD and IPW Data Sources, Reports on Geodesy No. 2 (85) pp. 125- 137.
- 29. Kruczyk, M ., T. Liwosz, (2012). Tropospheric Delay from EPN Reprocessing by WUT LAC as Valuable Data Source - in Comparison to Operational EPN Products and Aerological Data. Reports on Geodesy, No 1 (92)/2012
- 30. Liwosz, T., (2010). Recent activities of the WUT EPN Local Analysis Centre, poster prezentowany na Symposium of the IAG Subcommission for Europe (EUREF), Gavle, Sweden, June 2-5 2010 (dostępna wersja elektroniczna http://www.euref.eu/symposia/2010Gavle/P-05-Liwosz.pdf)
- 31. Liwosz, T., M. Kruczyk, J. Rogowski, (2010). WUT LAC Report presented at 7th EUREF LAC EUREF Analysis Workshop, Warsaw, November 18-19 2010 (wersja elektroniczna: http://www.epncb.oma.bel_newsmails/workshops/EPNLACWS_2010/day1/s2/8_wut_lac_report.pdf)
- 32. Marini, J. W., (1972). Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Science, No. 7(2), pp 223-231
- 33. Meliven, R. (2010). Fundamentals of Weather and Climate. Second Edition. Oxford University Press
- 34. Niell, A., (1996). Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res., 101 (B2), pp 3227-3246
- 35. Niell, A.E. (2001). Preliminary evaluation of atmospheric mapping functions based on numerical weather models. Phys. Chem. Earth, 26, pp 475-480
- 36. Rocken, C., R. Ware, T. Van Hove, F. Solheim, C. Alber, J. Johnson, M. Bevis and S. Businger, (1993). Sensing atmospheric water vapor with the Global Positioning System. Geophys. Res. Lett., 20, 2631
- 37. Rüeger, J., (2002). Refractive Index Formulae for Radio Waves. JS28 Integration of Techniques and Corrections to Achieve: Accurate Engineering. FIG XXII International Congress Washington. D.C. USA. April 19-26 2002 (www)
- 38. Seeber, G., (1993). Satellite Geodesy: Foundations, Methods and Applications. Walter de Gruyter, Berlin-New York
- 39. Smith, E.K., Weintraub, S., (1953). The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies. Proceedings of the Institute of Radio Engineers (I.R.E.), 41, pp 1035-1037
- 40. Thayer, G., (1974). An improved equation for the radio refractive index of air, Radio Science, Vol. 9, No. 10, pp 803-807
- 41. Torge, W., (1991). Geodesy. 2nd Edition, de Gruyter, Berlin-New York
- 42. Völksen, Ch., (2010). The EPN Reprocessing Project: Mission, Plans and Problems, 7th EUREF LAC Workshop. Warsaw (wersja elektroniczna dostępna jako: http://www.epncb.oma.be/_newsmails/workshops/EPNLACWS_2010/day2/s1/1_the_epn_reprocessing_project_mission_plans_and_problems.pdf)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e6c55522-bb21-4c6f-b5de-16b9a0988a64