Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 7 | 419--436
Tytuł artykułu

An Adaptive Predictor-Based Control Approach for Tracking Control of a Hydraulic Actuator System

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electro-hydraulic actuators offer advantages over traditional hydraulic actuators, particularly for high-precision force or position control, but their nonlinear dynamics complicate modelling and control. This study proposes a predictor-integrated adaptive controller to address these challenges. By combining a proportional-integral-derivative controller with a sliding surface, the system tracks desired trajectories, while a parameter optimization rule minimizes errors. Additionally, a smart grey prediction model with dynamic step size adjusts parameters and generates control signals to reduce noise and disturbances. Simulations show improved accuracy and control performance, with a root mean square error reduction of over 50% compared to traditional control algorithms. This adaptive approach ensures precise control in varying conditions, making it suitable for aerospace, automotive, and robotics applications.
Wydawca

Rocznik
Strony
419--436
Opis fizyczny
Bibliogr. 31 poz., fig., tab.
Twórcy
  • Faculty of Mechanical Technology, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan, Ho Chi Minh City, Vietnam, nuhtm@huit.edu.vn
  • Faculty of Mechanical Technology, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan, Ho Chi Minh City, Vietnam
autor
  • Faculty of Mechanical Technology, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan, Ho Chi Minh City, Vietnam
  • Faculty of Mechanical Technology, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan, Ho Chi Minh City, Vietnam
Bibliografia
  • 1. Feng H., Jiang J., Chang X., Yin C., Cao D., Yu H., Li C. and Xie J. Adaptive sliding mode controller based on fuzzy rules for a typical excavator electro-hydraulic position control system, Engineering Applications of Artificial Intelligence, 2023, 126, 107008. https://doi.org/10.1016/j.engappai.2023.107008.
  • 2. Chen J.J.L., Gao W., Wang C., Xu W., Ai C. and Chen G. Position control for a hydraulic loading system using the adaptive backsliding control method, Control Engineering Practice, 2023, 138, 105586. https://doi.org/10.1016/j.conengprac.2023.105586.
  • 3. Phan V.D., Truong H.V.A. and Ahn K.K. Actuator failure compensation-based command filtered control of electro-hydraulic system with position constraint, ISA Transactions, 2023, 134, 561–572. https://doi.org/10.1016/j.isatra.2022.08.023.
  • 4. Zhang F.Z.J., Cheng M., Ding R., Xu B., and Zong H. Parameter identification of hydraulic manipulators considering physical feasibility and control stability, IEEE Transactions on Industrial Electronics, 2023, 71(1), 718–728. https://doi.org/10.1109/TIE.2023.3250753.
  • 5. Pyrhönen L., Jaiswal S. and Mikkola A. Mass estimation of a simple hydraulic crane using discrete extended Kalman filter and inverse dynamics for online identification, Nonlinear Dynamics, 2023, 111(23), 21487–21506. https://doi.org/10.1007/s11071-023-08946-1.
  • 6. Yue Y., Li Y. and Zuo X. Optimization of subsea production control system layout considering hydraulic fluid pressure loss, Ocean Engineering, 2023, 288, 116047. https://doi.org/10.1016/j.oceaneng.2023.116047.
  • 7. Kumar P., Park S., Zhang Y., Jo S.H., Kim H.S. and Kim T. A review of hydraulic cylinder faults, diagnostics, and prognostics, International Journal of Precision Engineering and Manufacturing - Green Technology, 2024, 11, 1637–1661. https://doi.org/10.1007/s40684-024-00639-3.
  • 8. Prakash J., Miglani A. and Kankar P.K. Internal leakage detection in hydraulic pump using model-agnostic feature ranking and ensemble classifiers, Journal of Computing and Information Science in Engineering, 2023, 23(4). https://doi.org/10.1115/1.4056365.
  • 9. Coskun M.Y. and İtik M. Intelligent PID control of an industrial electro-hydraulic system, ISA Transactions, 2023, 139, 484–498. https://doi.org/10.1016/j.isatra.2023.04.005.
  • 10. Çetin Ş. and Akkaya A.V. Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system, Nonlinear Dynamics, 2010, 61(3), 465–476. https://doi.org/10.1007/s11071-010-9662-1.
  • 11. Alleyne A. and Liu R. A simplified approach to force control for electro-hydraulic systems, Control Engineering Practice, 2000, 8(12), 1347–1356. https://doi.org/10.1016/S0967-0661(00)00081-2.
  • 12. Kalyoncu M. and Haydim M. Mathematical modelling and fuzzy logic based position control of an electrohydraulic servosystem with internal leakage, Mechatronics, 2009, 19(6), 847–858. https://doi.org/10.1016/j.mechatronics.2009.04.010.
  • 13. Liu Z., Sun J., Yue D., Zuo X., Gao H. and Feng K. A review on integral evolution of electro-hydraulic actuation in three momentous domains: aerospace, engineering machinery, and robotics, 4th Int. Conf. on Mechanical Engineering, Intelligent Manufacturing and Automation Technology, Guilin, China, 2023. https://doi.org/10.1117/12.3026210
  • 14. Goljat S., Lovrec D. and Tič V. Advantages of pump controlled electro hydraulic actuators, Lecture Notes in Networks and Systems, 2021, 233, 774–780. https://doi.org/10.1007/978-3-030-75275-0_85.
  • 15. Quan Z., Quan L. and Zhang J., Review of energy efficient direct pump controlled cylinder electrohydraulic technology, Renewable and Sustainable Energy Reviews, 2014, 35, 336–346. https://doi.org/10.1016/j.rser.2014.04.036.
  • 16. Casoli P., Scolari F., Vescovini C.M. and Rundo M. Energy comparison between a load sensing system and electro-hydraulic solutions applied to a 9-ton excavator, Energies, 2022, 15(7), 2583. https://doi.org/10.3390/en15072583.
  • 17. Fallahi M., Zareinejad M., Baghestan K., Tivay A., Rezaei S.M. and Abdullah A. Precise position control of an electro-hydraulic servo system via robust linear approximation, ISA Transactions, 2018, 80, 503–512. https://doi.org/10.1016/j.isatra.2018.06.002.
  • 18. Phan V.D., Vo C.P., Dao H.V. and Ahn K.K. Robust fault-tolerant control of an electro-hydraulic actuator with a novel nonlinear unknown input observer, IEEE Access, 2021, 9, 30750–30760. https://doi.org/10.1109/ACCESS.2021.3059947.
  • 19. Przystupa K. Tuning of PID controllers – approximate methods. Advances in Science and Technology Research Journal. 2018; 12(4): 56–64. https://doi.org/10.12913/22998624/99987.
  • 20. Izci D., Ekinci S. and Hussien A.G. Effective PID controller design using a novel hybrid algorithm for high order systems, PLoS One, 2023, 18(5), e0286060 https://doi.org/10.1371/journal.pone.0286060.
  • 21. Guo Y. and Mohamed M.E.A. Speed control of direct current motor using ANFIS based hybrid P-I-D configuration controller, IEEE Access, 2020, 8, 125638–125647. https://doi.org/10.1109/ACCESS.2020.3007615.
  • 22. Liem D.T. and Ahn K.K. DC motor parameters identification and sensorless torque estimation using Fuzzy PID, 12th International Conference on Control, Automation and Systems, 2012, 76–81.
  • 23. Park D, Le T.L, Quynh N.V., Long N.K. and Hong S.K. Online tuning of PID controller using a multilayer fuzzy neural network design for quadcopter attitude tracking control, front. Neurorobot. 2021, 14, 619350. https://doi.org/10.3389/fnbot.2020.619350.
  • 24. Liem, D.T. Trajectory control of a hydraulic system using intelligent control approach based on adaptive prediction model, IFAC Journal of Systems and Control, 2023, 26, 100228. https://doi.org/10.1016/j.ifacsc.2023.100228.
  • 25. García-Martínez J.R., Cruz-Miguel E.E., CarrilloSerrano R.V., Mendoza-Mondragón F., ToledanoAyala M. and Rodríguez-Reséndiz J. A PID-type fuzzy logic controller-based approach for motion control applications, Sensors, 2020, 20(18), 5323. https://doi.org/10.3390/s20185323.
  • 26. Liem D.T., Truong D.Q. and Ahn K.K. A torque estimator using online tuning grey fuzzy PID for applications to torque-sensorless control of DC motors, Mechatronics, 2015, 26, 45–63. https://doi.org/10.1016/j.mechatronics.2015.01.004.
  • 27. Gupta K. Intelligent machining of shape memory alloys. Advances in Science and Technology Research Journal. 2021; 15(3): 43–53. doi:10.12913/22998624/138303.
  • 28. Vassilyev S.N., Kudinov Y.I., Pashchenko F.F., Durgaryan I.S., Kelina A.Y., Kudinov I.Y. and Pashchenko A.F. Intelligent control systems and fuzzy controllers. II. Trained Fuzzy Controllers, Fuzzy.
  • PID Controllers, Automation and Remote Control, 2020, 81(5), 922–934. https://doi.org/10.1134/S0005117920050112.
  • 29. Campos P.J., Coria L.N. and Cazarez-Castro N.R. Model-free design of speed tracking controller via fuzzy Lyapunov synthesis for a surface-mounted PMSM, Electrical Engineering, 2022, 104(3), 1565–1572. https://doi.org/10.1007/s00202-021-01414-2.
  • 30. Zhou W., Jiang R., Ding S., Cheng Y., Li Y. and Tao H. A novel grey prediction model for seasonal time series, Knowledge-Based Systems, 2021, 229, 107363. https://doi.org/10.1016/j.knosys.2021.107363.
  • 31. Liu S., Yang Y., Xie N. and Forrest J. New progress of Grey System Theory in the new millennium, Grey Systems: Theory and Application, 2016, 6(1), 2–31. https://doi.org/10.1108/GS-09-2015-0054.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e6976eb3-6ad0-44de-873b-8f82d9e414f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.