Czasopismo
2024
|
Vol. 17, no. 1
|
105--114
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
A study was conducted on the use of excess activated sludge from a municipal wastewater treatment plant as an adsorbent in the removal of Acid Red 18. The excess sludge was thermally modified using microwave radiation. The study aimed to evaluate the possibility of using this type of waste adsorbent in the batch adsorption process to remove a selected synthetic dye. Moreover, the experiments were aimed at analyzing the adsorption kinetics and adsorption isotherms of the batch adsorption process. Experimental results showed that in the case of adsorption kinetics, a greater match with experimental results was obtained for the pseudo-second-order model. This indicates that the adsorption process was chemical in nature. In the case of adsorption isotherm analysis, it showed that the best fit to experimental results was obtained for the Langmuir, Sips, and Toth isotherm models. Thus, this indicates the occurrence of a single-layer adsorption process. The determined values of adsorption capacity based on the Langmuir, Sips, and Toth models are in the range of 71.6 mg/g-79.0 mg/g.
Czasopismo
Rocznik
Tom
Strony
105--114
Opis fizyczny
Bibliogr. 70 poz.
Twórcy
autor
- PhD; Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland, barbara.pieczykolan@polsl.pl
Bibliografia
- [1] Nidheesh, P. V., Divyapriya, G., Ezzahra Titchou, F.,
- & Hamdani, M. (2022). Treatment of textile wastewater by sulfate radical based advanced oxidation processes. Separation and Purification Technology, 293(April), 121115.
- [2] Ma, Z., Chang, H., Liang, Y., Meng, Y., Ren, L., & Liang, H. (2024). Research progress and trends on state-of-the-art membrane technologies in textile wastewater treatment. Separation and Purification Technology, 333(November 2023), 125853.
- [3] Mishra, V., Mudgal, N., Rawat, D., Poria, P., Mukherjee, P., Sharma, U., ... Sharma, R. S. (2023). Integrating microalgae into textile wastewater treatment processes: Advancements and opportunities. Journal of Water Process Engineering, 55(May), 104128.
- [4] Islam, A., Teo, S. H., Taufiq-Yap, Y. H., Ng, C. H., Vo, D. V. N., Ibrahim, M. L.,... Awual, M. R. (2021). Step towards the sustainable toxic dyes and heavy metals removal and recycling from aqueous solution- A comprehensive review. Resources, Conservation and Recycling, 175 (August), 105849.
- [5] Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172-184.
- [6] Champagne, P. P., & Ramsay, J. A. (2010). Dye decolorization and detoxification by laccase immobilized on porous glass beads. Bioresource Technology, 101 (7), 2230-2235.
- [7] Weldegebrieal, G. K. (2020). Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. Inorganic Chemistry Communications, 120 (June), 108140.
- [8] Carmen, Z., & Daniel, S. (2012). Textile Organic Dyes - Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents - A Critical Overview. Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update, 2741 (31).
- [9] Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 252, 352-365.
- [10] Shokoohi, R., Vatanpoor, V., Zarrabi, M., & Vatani, A. (2010). Adsorption of acid red 18 (AR18) by activated carbon from poplar wood - A kinetic and equilibrium study. E-Journal of Chemistry, 7(1), 65-72.
- [11] Chen, Y., Long, W., & Xu, H. (2019). Efficient removal of Acid Red 18 from aqueous solution by insitu polymerization of polypyrrole-chitosan composites. Journal of Molecular Liquids, 287, 110888.
- [12] Amin, M. S. A., Stüber, F., Giralt, J., Fortuny, A., Fabregat, A., & Font, J. (2023). Compact tubular carbon-based membrane bioreactors for the anaerobic decolorization of azo dyes. Journal of Environmental Chemical Engineering, 11 (5), 110633.
- [13] Zahrim, A. Y., & Hilal, N. (2013). Treatment of highly concentrated dye solution by coagulation/flocculation-sand filtration and nanofiltration. Water Resources and Industry, 3, 23-34.
- [14] Li, H., Liu, S., Zhao, J., & Feng, N. (2016). Removal of reactive dyes from wastewater assisted with kaolin clay by magnesium hydroxide coagulation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 494, 222-227.
- [15] Riera-Torres, M., Gutiérrez-Bouzán, C., & Crespi, M. (2010). Combination of coagulation-flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination, 252(1-3), 53-59.
- [16] Sultana, H., Usman, M., & Farooqi, Z. H. (2021). Micellar flocculation for the treatment of synthetic dyestuff effluent: Kinetic, thermodynamic and mechanistic insights. Journal of Molecular Liquids, 344, 117964.
- [17] Suksaroj, C., Héran, M., Allègre, C., & Persin, F. (2005). Treatment of textile plant effluent by nanofiltration and/or reverse osmosis for water reuse. Desalination, 178(1-3 SPEC. ISS.), 333-341.
- [18] Nataraj, S. K., Hosamani, K. M., & Aminabhavi, T. M. (2009). Nanofiltration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures. Desalination, 249(1), 12-17.
- [19] Tan, Y. J., Sun, L. J., Li, B. T., Zhao, X. H., Yu, T., Ikuno, N., ... Hu, H. Y. (2017). Fouling characteristics and fouling control of reverse osmosis membranes for desalination of dyeing wastewater with high chemical oxygen demand. Desalination, 419 (June), 1-7.
- [20] Khokhlova, T. D., & Hien, L. T. (2007). Adsorption of dyes on activated carbon and graphitic thermal carbon black. Moscow University Chemistry Bulletin, 62(3), 128-131.
- [21] Hadi, M., Samarghandi, M. R., & McKay, G. (2010). Equilibrium two-parameter isotherms of acid dyes sorption by activated carbons: Study of residual errors. Chemical Engineering Journal, 160(2), 408-416.
- [22] McKay, G., Mesdaghinia, A., Nasseri, S., Hadi, M., & Solaimany Aminabad, M. (2014). Optimum isotherms of dyes sorption by activated carbon: Fractional theoretical capacity & error analysis. Chemical Engineering Journal, 251, 236-247.
- [23] Ozacar, M., & §engil, I. A. (2002). Adsorption of acid dyes from aqueous solutions by calcined alunite and granular activated carbon. Adsorption, 8(4), 301-308.
- [24] Kazeem, T. S., Lateef, S. A., Ganiyu, S. A., Qamaruddin, M., Tanimu, A., Sulaiman, K. O., ... Alhooshani, K. (2018). Aluminium-modified activated carbon as efficient adsorbent for cleaning of cationic dye in wastewater. Journal of Cleaner Production, 205, 303-312.
- [25] Quan, X., Luo, D., Wu, J., Li, R., Cheng, W, & Ge, shuping. (2017). Ozonation of acid red 18 wastewater using O3/Ca(OH)2 system in a micro bubble gas-liquid reactor. Journal of Environmental Chemical Engineering, 5(1), 283-291.
- [26] Bes-Piá, A., Iborra-Clar, A., Mendoza-Roca, J. A., Iborra-Clar, M. I., & Alcaina-Miranda, M. I. (2004). Nanofiltration of biologically treated textile effluents using ozone as a pre-treatment. Desalination, 167(1-3), 387-392.
- [27] Srinivasan, S. V., Rema, T., Chitra, K., Sri Balakameswari, K., Suthanthararajan, R., Uma Maheswari, B., ... Rajamani, S. (2009). Decolourisation of leather dye by ozonation. Desalination, 235(1-3), 88-92.
- [28] Turhan, K., & Turgut, Z. (2009). Decolorization of direct dye in textile wastewater by ozonization in a semi-batch bubble column reactor. Desalination, 242(1-3), 256-263.
- [29] Gao, L., Zhai, Y., Ma, H., & Wang, B. (2009). Degradation of cationic dye methylene blue by ozonation assisted with kaolin. Applied Clay Science, 46(2), 226-229.
- [30] Gültekin, I., & Ince, N. H. (2006). Degradation of aryl-azo-naphthol dyes by ultrasound, ozone and their combination: Effect of a-substituents. Ultrasonics Sonochemistry, 13(3), 208-214.
- [31] Konsowa, A. H. (2003). Decolorization of wastewater containing direct dye by ozonation in a batch bubble column reactor. Desalination, 158(1-3), 233-240.
- [32] Asaithambi, P., Sajjadi, B., Abdul Aziz, A. R., & Daud, W. M. A. B. W. (2017). Ozone (O3) and sono (US) based advanced oxidation processes for the removal of color, COD and determination of electrical energy from landfill leachate. Separation and Purification Technology, 172, 442-449.
- [33] Katsoyiannis, I. A., Canonica, S., & von Gunten, U. (2011). Efficiency and energy requirements for the transformation of organic micropollutants by ozone, OVH2O2 and UV/H2O2. Water Research, 45(13), 3811-3822.
- [34] Dadban Shahamat, Y., Masihpour, M., Borghei, P., & Hoda Rahmati, S. (2022). Removal of azo red-60 dye by advanced oxidation process O3/UV from textile wastewaters using Box-Behnken design. Inorganic Chemistry Communications, 143(April), 109785.
- [35] Collivignarelli, M. C., Abbà, A., Carnevale Miino, M., & Damiani, S. (2019). Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 236(February), 727-745.
- [36] Song, H., Chen, C., Zhang, H., & Huang, J. (2016). Rapid decolorization of dyes in heterogeneous Fenton-like oxidation catalyzed by Fe-incorporated Ti-HMS molecular sieves. Journal of Environmental Chemical Engineering, 4(1), 460-467.
- [37] Gonçalves, R. G. L., Lopes, P. A., Resende, J. A., Pinto, F. G., Tronto, J., Guerreiro, M. C., ... Neto, J. L. (2019). Performance of magnetite/layered double hydroxide composite for dye removal via adsorption, Fenton and photo-Fenton processes. Applied Clay Science, 179 (May), 105152.
- [38] Shi, X., Tian, A., You, J., Yang, H., Wang, Y., & Xue, X. (2018). Degradation of organic dyes by a new heterogeneous Fenton reagent - Fe2GeS4 nanoparticle. Journal of Hazardous Materials, 353, 182-189. Retrieved from https://doi.org/10.1016Zj.jhazmat.2018.04.018
- [39] Quadrado, R. F. N., & Fajardo, A. R. (2017). Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts. Carbohydrate Polymers, 177(June), 443-450.
- [40] Gu, L., Li, C., Wen, H., Zhou, P., Zhang, D., Zhu, N., & Tao, H. (2017). Facile synthesis of magnetic sludgebased carbons by using Electro-Fenton activation and its performance in dye degradation. Bioresource Technology, 241 (2017), 391-396.
- [41] Alimard, P. (2019). Fabrication and kinetic study of Nd-Ce doped Fe3O4-chitosan nanocomposite as catalyst in Fenton dye degradation. Polyhedron, 171, 98-107.
- [42] Mozia, S., Tomaszewska, M., & Morawski, A. W. (2005). Photocatalytic degradation of azo-dye Acid Red 18. Desalination, 185(1-3), 449-456.
- [43] Mozia, S., Tomaszewska, M., & Morawski, A. W. (2007). Photodegradation of azo dye Acid Red 18 in a quartz labyrinth flow reactor with immobilized TiO2 bed. Dyes and Pigments, 75(1), 60-66.
- [44] Bessegato, G. G., Cardoso, J. C., da Silva, B. F., & Zanoni, M. V. B. (2016). Combination of photoelectrocatalysis and ozonation: A novel and powerful approach applied in Acid Yellow 1 mineralization. Applied Catalysis B: Environmental, 180, 161-168.
- [45] Zhang, M., Gong, J., Zeng, G., Zhang, P., Song, B., Cao, W., ... Huan, S. (2018). Enhanced degradation performance of organic dyes removal by bismuth vanadate-reduced graphene oxide composites under visible light radiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 559(July), 169-183.
- [46] Waghchaure, R. H., Adole, V. A., & Jagdale, B. S. (2022). Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: A concise review. Inorganic Chemistry Communications, 143 (May), 109764.
- [47] Javanbakht, V., & Mohammadian, M. (2021). Photoassisted advanced oxidation processes for efficient removal of anionic and cationic dyes using Bentonite/TiO2 nano-photocatalyst immobilized with silver nanoparticles. Journal of Molecular Structure, 1239, 130496.
- [48] Du, W N., & Chen, S. T. (2018). Photo- and chemo- catalytic oxidation of dyes in water. Journal of Environmental Management, 206, 507-515.
- [49] DYE | WORLD DYE VARIETY Acid Red 18. (n.d.). Retrieved from http://www.worlddyevariety.com/acid-dyes/acid-red-18.html
- [50] Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska veten-skapsakademiens. Handlingar, 24, 1-39.
- [51] Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource technology, 102(19), 8877-8884.
- [52] Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465.
- [53] Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38(11), 2221-2295.
- [54] Freundlich, H. M. F. (1906). Over the adsorption in solution. J. Phys. Chem, 57, 385-470.
- [55] Jovanovic, D. S. (1969). Physical adsorption of gases I: Isotherms for monolayer and multilayer adsorption. Colloid Polym. Sci., 235, 1203-1214.
- [56] Dubinin, M. M., & Radushkevich, L. V (1947). The Equation of the Characteristic Curve of Activated Charcoal. Proceedings of the Academy of Sciences, Physical Chemistry Section, 55, 331-337.
- [57] Sips, R. (1948). On the Structure of a Catalyst Surface. The Journal of Chemical Physics, 16(5), 490-495.
- [58] Tóth, J. (1971). State Equation of the Solid-Gas Interface Layers.
- [59] dos Reis, G. S., Bergna, D., Grimm, A., Lima, E. C., Hu, T., Naushad, M., & Lassi, U. (2023). Preparation of highly porous nitrogen-doped biochar derived from birch tree wastes with superior dye removal performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 669(February), 131493.
- [60] Heibati, B., Rodriguez-Couto, S., Al-Ghouti, M. A., Asif, M., Tyagi, I., Agarwal, S., & Gupta, V. K. (2015). Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. Journal of Molecular Liquids, 208, 99-105.
- [61] Pieczykolan, B., & Płonka, I. (2019). PostCoagulation Sludge as an Adsorbent of Dyes from Aqueous Solutions. Ecological Chemistry and Engineering S, 26(3), 509-520.
- [62] Pieczykolan, B., & Płonka, I. (2019). Application of Excess Activated Sludge as Waste Sorbent for Dyes Removal from their Aqueous Solutions. Ecological Chemistry and Engineering S, 26(4), 773-784.
- [63] Larous, S., & Meniai, A. H. (2016). Adsorption of Diclofenac from aqueous solution using activated carbon prepared from olive stones. International Journal of Hydrogen Energy, 41(24), 10380-10390.
- [64] Fadzail, E, Hasan, M., Mokhtar, Z., & Ibrahim, N. (2022). Removal of naproxen using low-cost Dillenia Indica peels as an activated carbon. Materials Today: Proceedings, 57(3), 1108-1115.
- [65] Shabandokht, M., Binaeian, E., & Tayebi, H. A. (2016). Adsorption of food dye Acid red 18 onto polyaniline-modified rice husk composite: isotherm and kinetic analysis. Desalination and Water Treatment, 57(57), 27638-27650.
- [66] Liu, A., He, S., Zhang, J., Liu, J., & Shao, W. (2023). Preparation and characterization of novel cellulose based adsorbent with ultra-high methylene blue adsorption performance. Materials Chemistry and Physics, 296(September 2022), 127261.
- [67] Can, N., Omür, B. C., & Altindal, A. (2016). Modeling of heavy metal ion adsorption isotherms onto metallophthalocyanine film. Sensors and Actuators, B: Chemical, 237, 953-961.
- [68] Dragan, E. S., & Apopei Loghin, D. F. (2013). Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix. Chemical Engineering Journal, 234, 211-222.
- [69] Araújo, C. S. T., Almeida, I. L. S., Rezende, H. C., Marcionilio, S. M. L. O., Léon, J. J. L., & de Matos, T. N. (2018). Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 137, 348-354.
- [70] Ullah, S., Bustam, M. A., Al-Sehemi, A. G., Assiri, M. A., Abdul Kareem, F. A., Mukhtar, A., ... Gonfa, G. (2020). Influence of post-synthetic graphene oxide (GO) functionalization on the selective CO2/CH4 adsorption behavior of MOF-200 at different temperatures; an experimental and adsorption isotherms study. Microporous and Mesoporous Materials, 296(October 2019), 110002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e67cd1e5-5504-4cd3-8277-f22d8dda8ae8