Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, iss. 8 | 311--320
Tytuł artykułu

Landfill Gas Prospect as a Renewable Energy Source at Talang Gulo Jambi City, Indonesia

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The landfill is a place used for landfill that can have a negative impact on the environment such as, causing greenhouse gas emissions, soil contamination, and groundwater pollution. Landfill gas content of CH4, CO2 and non-methane organic compounds (NMOC) is the cause of the greenhouse effect and Global warming potential (GWP). The concentration of CH4 in landfill gas is relatively low, but CH4 causes a greenhouse effect 21 times greater than CO2 . The research was conducted at the Talang Gulo landfill in Jambi City. The purpose of this study is to measure and analyze the production and amount of CH4 gas concentration emitted into the atmosphere and assess methane gas emissions as an energy source. The Application to estimate gas using models was with LandGEM-v302 soft-ware. The results of LandGEM-v302 simulation of landfill gas show a peak in 2023 of 3,194×104 Mg·year-1 for total landfill gas, methane emissions A6 (8,530×103 Mg·year-1), carbon dioxide (2,341×104 Mg year-1) and NMOC (3,667×102 Mg·year-1). The potential of methane gas as a source of fuel energy is 11,403,693.84 kg·year-1 and electrical energy is 182,862.08 kWh.
Słowa kluczowe
Wydawca

Rocznik
Strony
311--320
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Environmental Science Master Study Program, Jambi University Jl. Arif Rahman Hakim, Telanaipura District, Jambi City, Jambi 36122, Indonesia, hutwan_syarifuddin@unja.ac.id
  • Department of Mining Engineering, Institut Teknologi Sumatera, Lampung, Indonesia
  • Animal Science Study Program, Jambi University, Jalan Jambi – Muara Bulian KM. 15, Mendalo Darat, Jambi Luar Kota District, Muaro Jambi Regency, Jambi 36361, Indonesia
autor
  • Animal Science Study Program, Jambi University, Jalan Jambi – Muara Bulian KM. 15, Mendalo Darat, Jambi Luar Kota District, Muaro Jambi Regency, Jambi 36361, Indonesia
autor
  • Environmental Technical Study Program, Jambi University, Jalan Jambi – Muara Bulian KM. 15, Mendalo Darat, Jambi Luar Kota District, Muaro Jambi Regency, Jambi 36361, Indonesia
Bibliografia
  • 1. Abanades, S., Abbaspour, H., Ahmadi, A., Das, B., Ehyaei, M. A., Esmaeilion, F., El Haj Assad, M., Hajilounezhad, T., Hmida, A., Rosen, M. A., Safari, S., Shabi, M. A., Silveira, J. L. 2022. A conceptual review of sustainable electrical power generation from biogas. Energy Science and Engineering, 10(2), 630–655. https://doi.org/10.1002/ese3.1030
  • 2. Abushammala, M.F., Basri, N.E.A., Younes, M.K. 2016. Seasonal variation of landfill methane and carbon dioxide emissions in a tropical climate. Int. J. Environ. Sci. Dev. 7, 586-590. https://doi.org/10.18178/ijesd.2016.7.8.844
  • 3. Aghdam, E.F., Fredenslund, A.M., Chanton, J. 2017. Determination of gas recovery efficiency at two Danish landfills by performing downwind plume methane measurements and stable carbon isotope isotopic analysis. Waste Management, 73, 220-229, https://doi.org/10.1016/j.wasman.2017.11.049
  • 4. Aguilar-Virgen, Q., Taboada-Gonzalez, P., Ojeda-Benitez, S. 2014. Power generation with biogas from municipal solid waste: prediction of gas generation with in situ parameters. Renewable Sustainable Energy Review 30, 412-419, http://dx.doi.org/10.1016/j.rser.2013.10.014
  • 5. Aji, K. P., Bambang, A. N. 2019. Konversi energi biogas menjadi energi listrik sebagai alternatif energi terbarukan dan ramah lingkungan di Desa Langse, Kecamatan Margorejo Kabupaten Pati. SENTIKUIN, Vol. 2. Tahun 2019, page B4.1-B4.7. Fakultas Teknik Universitas Tribhuwana Tunggadewi, Malang, Indonesia.
  • 6. Bajic, B.Z., Dodic, S.N., Vucurovic, D.G., Dodic, J.M., Grahovac, J.A. 2015. Waste to energy status in Serbia. Renewable Sustainable energy rev. 50, 1437–1444.
  • 7. Beylot, A., Villeneuve, J., Bellenfant, G. 2013. Life cycle assessment of landfill biogas management: sensitivity to diffuse and combustion air emissions. Waste Manage. 33, 401–411.
  • 8. Bian, B. Y., Shen, X., Hu, G., Tian, L., Zhang. 2020. Reduction of sludge by a biodrying process: Parameter optimization and mechanism, Chemosphere 248 (2020) 125970.
  • 9. BPS. 2022. Kota Jambi Dalam Angka. 2022. Jambi: BPS Kota Jambi.
  • 10. Budihardjo, M.A.. Ardiansyah, S.Y., Ramadan, B.S. 2022. Community-driven material recovery facility (CdMRF) for sustainable economic incentives of waste management: Evidence from Semarang City, Indonesia. Habitat International 119 (2022), https://doi.org/10.1016/j. habitatint.2021.102488 102488.
  • 11. Budihardjo, M.A., Humaira, N.G., Ramadan, B.S., Wahyuningrum, I.F.S., Huboyo, H.S. 2023. Strategies to reduce greenhouse gas emissions from municipal solid waste management in Indonesia: The case of Semarang City. Alexandria Engineering Journal, 69, 771–783. https://doi.org/10.1016/j.aej.2023.02.029
  • 12. Capellin,L., Sironi, S., Del, R. 2014. Evaluation of landfill surface emissions. Chemical Engineering Transactions 40,187-192, https://doi.org/10.3303/CET1440032
  • 13. Dace, E., Blumberga, D., Kuplaise, G., Bozko, L., Khabdullina, Z., Khabdullin, A. 2014. Optimization of landfill gas us in municipal solid waste landfill in Latvia. Energy Procedua 72 (2015) 293-299.
  • 14. Demir, C., Yetis, Ṻ., Ṻnlὕ, K. 2019. Identification of waste management strategies and waste generation factors for thermal power plant sector wastes in Turkey, Waste Management & Research 37 (2019) 210–218, https://doi.org/ 10.1177/0734242X18806995.
  • 15. Dewilda, Y., Warnares, S.A., Zulkarnaini. 2020. Study of generation, composition, characteristics, and recycling potential of industrial food waste in Padang City. Journal of Physics: Conference Series, 1625(1). https://doi.org/10.1088/1742-6596/1625/1/012044
  • 16. DLH. 2022. Perhitungan konsultan: DED Persampahan TPA Talang Gulo. Jambi: DLH Kota Jambi.
  • 17. Duan, Z., Scheutz,C., Kjeldsen, P. 2021. Trace gas emissions from municipal solid waste landfills: A review. Waste Management 119 (2021) 39–62
  • 18. EPA (Environmental Protection Agency). 2014. Global mitigation of non-CO2 greenhouse gases: 2010–2030. U.S. Environmental Protection Agency, Washington, DC, USA
  • 19. Evangelisti, S., Clift, R., Tagliaferri, C., Lettieri, P. 2017. A life cycle assessment of distributed energy production from organic waste: Two case studies in Europe. Waste Management, 64, 371–385. https://doi.org/10.1016/j.wasman.2017.03.028
  • 20. Farley, D., Kahfi, D., Sitorus, G., Landon, N., Situmorang, V. 2015. Sampah menjadi Energi Buku Panduan. Jakarta: Kementerian Energi Sumber Daya Mineral Republik Indonesia.
  • 21. Foster-Wittig, T.A., Thoma, E., Albertson, J.D. 2015. Estimation of point source fugitive emission rates from a single sensor time series: A conditionally-sampled Gaussian plume reconstruction. Atmospheric Environment 115 (2015): 101-109.
  • 22. Fuldauer, L. I., Parker, B. M., Yaman, R., Borrion,A. 2018. Managing anaerobic digestate from food waste in the urban environment: Evaluating the feasibility from an interdisciplinary perspective. Journal of Cleaner . https://www.sciencedirect.com/science/article/pii/S0959652618306966.
  • 23. Huang, H. 2021. Efficient extraction of past seawater Pb and Nd isotope signatures from southern ocean sediments, Geochemistry, Geophysics, Geosystems 22 (2021), https://doi. org/10.1029/2020GC009287.
  • 24. IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York.
  • 25.Jouhara, H., Czajczyńska, D., Ghazal, H., Krzyżyńska, R., Anguilano, L., Reynolds, A. J., Spencer, N. 2017. Municipal waste management systems for domestic use. Energy, 139, 485–506. https://doi.org/10.1016/j.energy.2017.07.162
  • 26. Kavitha, S., Kannah, R. Y., Kumar, G., Gunasekaran, M., Banu, J. R. 2020. Introduction: Sources and characterization of food waste and food industry wastes. In: Food Waste to Valuable Resources: Applications and Management (Issue July 2014). INC. https://doi.org/10.1016/B978-0-12-818353-3.00001-8
  • 27. Kaza, S., Yao, L., Bhada-Tata, P., Van Woerden, F. 2018. What a waste 2.0: a global snapshot of solid waste management to 2050. Urban Development; Washington, DC: World Bank. Ó World Bank https://openknowledge.worldbank.org/handle/10986/30317 License: CC BY 3.0 IGO.
  • 28. Kumar, A., Samadder, S. R. 2017. A review on technological options of waste to energy for effective management of municipal solid waste. Waste management (New York, N.Y.), 69, 407–422. https://doi.org/10.1016/j.wasman.2017.08.046
  • 29. Kumar, S., Nimchuk, N., Kumar, R., Zietsman, J., Ramani, T., Spiegel, C., Kenney, M. 2016. Specific model for the estimation of methane emission from municipal solid waste landfill in India. Bioresource Technology 216 (2016) 981-987.
  • 30. Li, H. , Meng, B., Yue, B., Gao, Q., Ma, Z., Zhang, W., Li, T., Yu, L. 2020. Seasonal CH4 and CO2 effluxes in a final covered landfill site in Beijing, China Science of the Total Environment 725 (2020) 138355.
  • 31. Ministry of Environment and Forestry. 2020. Greenhouse Gas Inventory Report (RAN-GRK) and Monitoring, Reporting, Verification. Directorate General of Climate Change Control.
  • 32. Mønster, J., Kjeldsen, P., Scheutz, C. 2019. Methodologies for measuring fugitive methane emissions from landfills – A review. Waste Management, 87, 835–859. https://doi.org/10.1016/j.wasman.2018.12.047
  • 33. Mostbauer, P., Lombardi, L., Olivieri, T., Lenz, S. 2013. Pilot scale evaluation of the BABIU process - Upgrading of landfill gas or biogas with the use of MSWI bottom ash. Waste management (New York, N.Y.). 34. 10.1016/j.wasman.2013.09.016.
  • 34. Nakashima, R.N., Junior, S.O. 2021. Thermodynamic evaluation of solid oxide fuel cells converting biogas into hydrogen and electricity. International Journal of Thermodynamics (IJoT). 24 (3), 204-214, doi: 10.5541/ijot.877847
  • 35. Niskanen, A., Varri, H., Havukainen, J., Uusitalo, V., Horttanainen, M. 2012. Enhancing landfill gas recovery. Journal of Cleaner Production 55 (2013) 67-71
  • 36. Norouzi, O., Maria, F.D., El-Hoz, M 2018. A short review of comparative energy, economic and environmental assessment of different biogas-based power generation technologies. ScienceDirect. Energy Procedia 148 (2018) 846-851.
  • 37. Poma, P., Usca, M., Polanco, M., Toulkeridis, T., Mestanza-Ramón, C. 2021. Estimation of biogas generated in two landfills in south-central ecuador. Atmosphere, 12 (10). https://doi.org/10.3390/atmos12101365
  • 38. Salamah, N., Zauhar, S., Ulum, M. 2015. Implementasi program pengelolaan sampah berwawasan lingkungan melalui pemanfaatan gas metana (Studi TPA Supit Urang Kota Malang). Jurnal Administrasi Publik (JAP), 3 (5), 818-823. Malang. Universitas Brawijaya.
  • 39. Scheutz, C., Kjeldsen, P. 2019. Guidelines for landfill gas emission monitoring using the tracer gas dispersion method. Waste Management, 85, 351–360. https://doi.org/10.1016/j.wasman.2018.12.048.
  • 40. Stempien, J. P., Ni, M., Sun, Q., Chan, S. H. 2015. Production of sustainable methane from renewable energy and captured carbon dioxide with the use of Solid Oxide Electrolyzer: Athermodynamic assessment. Energy, 82, 714–721. https://doi.org/10.1016/j.energy.2015.01.081
  • 41. Utami, W.G., Yogautami, R., Yuliandari, P., Iryani, D.A., Hasanudin, U. 2022. The potential of energy production and greenhouse gases emission reduction from households organic waste in Bandar Lampung, Indonesia. IOP Conf. Series: Earth and Environmental Science 1034 (2022) 012064. doi:10.1088/1755-1315/1034/1/012064.
  • 42. Wahyono, S. 2014. Studi potensi dan kualitas gas dari tempat pemrosesan akhir sampah Kota Probolinggo. Pusat Teknologi Lingkungan (PTL-BPPT). Jurnal Teknologi Lingkungan.16 (1), Januari 2015, 15-20.
  • 43. Zhou, C., Jiang, D., Zhao, Z. 2017. Quantification of greenhouse gas emissions from the predisposal stage. of municipal solid waste management. Environmental Science and Technology, 51(1), 320–327. https://doi.org/10.1021/acs.est.6b05180
  • 44. Zou, L., Wang, Y., Wu, R., Ji, S., Wan, Y., Cheng, H., Li, Y., Liu, J. 2023. Increasing the organic loading rate of household food waste anaerobic digestion by landfill leachate addition: Performance and mechanism. Journal of Environmental Management. Elsevier. 342. https://doi.org/10.1016/j.jenvman.2023.118170
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e670ef3b-1091-456f-b500-b52b44e15b6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.