Czasopismo
2015
|
Vol. 95, nr 4
|
265--272
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
There are several methods for generating scenarios in stochastic programming. With extensive historical data records, one possibility is to represent the probability distribution of the uncertain data using a statistical model suitable for sampling. This method is especially useful for handling uncertain data that develops over time by means of time series analysis. In this paper a time series model relevant to the short-term management of hydropower systems is proposed. This further illustrates the abilities of the models to capture developments in uncertain data over time. To demonstrate the validity of this model, results from the Nordic power exchange Nord Poland a Norwegian power plant are presented.
Czasopismo
Rocznik
Tom
Strony
265--272
Opis fizyczny
Bibliogr. 12 poz., tab., wykr.
Twórcy
autor
- Department of Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran, mansourhosseinifirouz1@gmail.com
autor
- Young Researchers and Elite club, Ardabil Branch, Islamic Azad University, Ardabil, Iran, noradin.ghadimi@gmail.com
Bibliografia
- [1] M. Shahidehpour, H. Yamin, Z. Li, Market overview in electric power systems, Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management (2002) 1–20.
- [2] L. Wu, M. Shahidehpour, A hybrid model for day-ahead price forecasting, Power Systems, IEEE Transactions on 25 (3) (2010) 1519–1530.
- [3] P. Kou, D. Liang, L. Gao, J. Lou, Probabilistic electricity price forecasting with variational heteroscedastic gaussian process and active learning, Energy Conversion and Management 89 (2015) 298–308.
- [4] R. Hafezi, J. Shahrabi, E. Hadavandi, A bat-neural network multi-agent system (bnnmas) for stock price prediction: Case study of dax stock price, Applied Soft Computing 29 (2015) 196–210.
- [5] J. Che, J. Wang, Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling, Energy Conversion and Management 51 (10) (2010) 1911–1917.
- [6] W.-M. Lin, H.-J. Gow, M.-T. Tsai, Electricity price forecasting using enhanced probability neural network, Energy Conversion and Management 51 (12) (2010) 2707–2714.
- [7] F. J. Nogales, J. Contreras, A. J. Conejo, R. Espínola, Forecasting next-day electricity prices by time series models, Power Systems, IEEE Transactions on 17 (2) (2002) 342–348.
- [8] F. Nogales, A. J. Conejo, Electricity price forecasting through transfer function models, Journal of the Operational Research Society 57 (4) (2006) 350–356.
- [9] J. Contreras, R. Espinola, F. J. Nogales, A. J. Conejo, Arima models to predict next-day electricity prices, Power Systems, IEEE Transactions on 18 (3) (2003) 1014–1020.
- [10] O. Abedinia, N. Amjady, M. Shafie-Khah, J. Catalão, Electricity price forecast using combinatorial neural network trained by a new stochastic search method, Energy Conversion and Management 105 (2015) 642–654.
- [11] L. Zhang, P. B. Luh, K. Kasiviswanathan, Energy clearing price prediction and confidence interval estimation with cascaded neural networks, Power Systems, IEEE Transactions on 18 (1) (2003) 99–105.
- [12] J.-J. Guo, P. B. Luh, Improving market clearing price prediction by using a committee machine of neural networks, Power Systems, IEEE Transactions on 19 (4) (2004) 1867–1876.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e6536093-d9db-4d1d-a3a8-21dca01ef16b