Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 101, nr 1 | 11--20
Tytuł artykułu

A novel method for islanding in active distribution network considering distributed generation

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The output of distributed generation (DG) has strong randomness, and its randomness has a great inuence on the division of islands. To simulate the impact of DG output on island division when dividing islands, this study proposed an island division method that considers the randomness of DG output. The basic idea of this method is as follows. First, Monte Carlo sampling was used to obtain the output power of DG under different confidence levels to simulate the randomness of DG output. Furthermore, a multi-objective and multi-constraint considering the randomness of DG output were established. The niche genetic algorithm was used to solve the model, and the effectiveness of the proposed model and algorithm was verified through the analysis of examples. The results show that the risk reserve power introduced by simulating the randomness of DG output is inversely proportional to the confidence level. The minimum value of the system node voltage level after islanding is 0.9495 pu, which meets the requirements of the constraint. Under the same conditions, compared with the island division method of not considering the random DG, the method proposed in this study not only has a larger total load recovery and a higher priority load recovery rate but also has a higher DG utilization rate, which can meet the needs of practical applications. This study provides a certain reference for the establishment and solution method of the islanding model of the distribution network with DG.
Wydawca

Rocznik
Strony
11--20
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • College of Information and Electrical Engineering, Shenyang Agricultural University, Liaoning Province, 110866, China, wddream2016@syau.edu.cn
autor
  • College of Information and Electrical Engineering, Shenyang Agricultural University, Liaoning Province, 110866, China
autor
  • Emanden Technical Solutions Pty Ltd, Adelaide, Australia
autor
  • Yingkou Power Supply Company, Liaoning Electric Power Co. Ltd, State Grid Co. Ltd, Liaoning Province, 115000, China
autor
  • Yingkou Power Supply Company, Liaoning Electric Power Co. Ltd, State Grid Co. Ltd, Liaoning Province, 115000, China
Bibliografia
  • [1] W.J. Pei, F. Wang, Y.H. Tan, Q.J. Jiang, and J. Yin. Distribution network reconfiguration with distributed generations characterized by output randomness based on ordinal optimization. Proceedings of the CSU-EPSA, 29(4):29-35, 2017.
  • [2] M. Ahmadi, O.B. Adewuyi, M.S.S. Danish, P. Mandal, A. Yona, and T. Senjyu. Optimum coordination of centralized and distributed renewable power generation incorporating battery storage system into the electric distribution network. International Joumal of Electrical Power and Energy Systems, 125:106458, 2021.
  • [3] A. Mahabadi, A. Khonsari, B. Khodabandeloo, H. Noori, and A. Majidi. Critical path-aware voltage island partitioning and oorplanning for hard real-time embedded systems. Integration the VLSI Journal, 48:21-35, 2015.
  • [4] H. Matayoshi, M. Kinjo, S.S. Rangarajan, G.G. Ramanathan, A.M. Hemeida, and T. Senjyu. Islanding operation scheme for DC microgrid utilizing pseudo Droop control of photovoltaic system. Energy for Sustainable Development, 55:95-104, 2015.
  • [5] R.A. Walling, R. Saint, R.C. Dugan, J. Burke, and L.A. Kojovic. Summary of distributed resources impact on power delivery systems. IEEE Transactions on Power Delivery, 23(3):1636-1644, 2008.
  • [6] Z. Ma, H.S. Liang, and J. Su. Important issues in planning and operation of active distribution system. Power System Technology, 39(6):1499-1503, 2015.
  • [7] J.X. Ruan, P.G. Ma, K. Chen, and Y. Fang. Islanding division strategy of distribution network with distributed generation based on spectral clustering. Journal of Electric Power, 34(5):438-444, 2019.
  • [8] T. Ha, Y.J. Zhang, V.V. Thang, and J.N. Huang. Energy hub modeling to minimize residential energy costs considering solar energy and BESS. Journal of Electric Power, 5(3):389-399, 2017.
  • [9] Y.M. Liu, J.L. Wang, H.L. Yang, Y.S. Li, and W. Xie. Dynamic optimal method of distribution network in consideration of flexible load adjustment capability. Journal of Electric Power, 47(1):73-80, 2021.
  • [10] H. Sekhavatmanesh and R. Cherkaoui. Distribution network restoration in a multi-agent frame-work using a convex OPF model. IEEE Transaction on Smart Grid, 10(3):2618-2628, 2019.
  • [11] X.F. Dong and Y.P. Lu. Islanding algorithm for distributed generators based on impoved prim algorithml. Power System Technology, 34(9):195-201, 2010.
  • [12] V. Hosseinnezhad, M. Rafiee, M. Ahmadian, and P. Siano. A comprehensive framework for optimal day-ahead operational planning of self-healing smart distribution systems. International Joumal of Electrical Power and Energy Systems, 99:28-44, 2018.
  • [13] Z.Q. Liu, Q.M. Bao, C.S. Sun, and X. Wu. Islanding algorithm of distribution system with distributed generations based on improved Kruskal algorithm. Transactions of China Electrotechnical Society, 28(9):164-171, 2013.
  • [14] Y.H. Yao, X. Zhang, W.Q. Qi, and Y. Zhang. Island partition of the distribution system based on Dijkstra algorithm. Power System Protection and Control, 45(24):36-43, 2017.
  • [15] H.J. Liu, L.Y. Cheng, J.G. Huang, W. Wu, X. Guan, and T.X. Huang. Islanding of multi period active distribution network considering intermittent DG and load response. Electric Power construction, 39(2):50-57, 2018.
  • [16] B. Mehdi, S.M. Muyeen, and I. Syed. Transiently stable intentional controlled islanding considering post-islanding voltage and frequency stability constraints. International Joumal of Electrical Power and Energy Systems, 127:106650, 2021.
  • [17] P. Zhang, P. Tang, Y. Ding, H.L. Jiang, and J. Chen. Service restoration strategy considering the volatility of distribution generations for active distribution networks. Proceedings of the CSU-EPSA, 30(1):115-120, 2018.
  • [18] N. Niu, J.X. Zhao, and X.X. Zhang. Island partition of distribution network with microgrid based on the energy at risk. IET Generation Transmission and Distribution, 11(4):830-837, 2016.
  • [19] X. Yi and Y.P. Lu. Islanding algorithm of distribution network with distributed Generators. Power System Technology, 6(7):50-54, 2006.
  • [20] Q. Zhou, H.L. Xie, B.L. Zheng, R.J. Liao, S.Z.Wang, and J.X. Rao. Hybrid algorithm based coordination between distribution network fault reconfiguration and islanding operation. Power System Technology, 39(1):136-142, 2015.
  • [21] R.L. Dong, Y. Qiang, and W.J. Yan. A two-stage approach on island partitioning of power distribtion networks with distributed genetration. In 2014 26th Chinese Control and Decision Conference (CCDC), volume 43, 2014.
  • [22] Y.T. Wang, X.H. Zhang, W. Tang, P.W. Cong, M.K. Bai, and L. Zhang. Fault recovery of distribution network considering time variation of photovoltaic and load. Power System Technology, 40(9):2706-2713, 2016.
  • [23] F. Li, S. Xu, J. Lin, and Y. Sun. Distribution network islanding division taking into account distributed power output and load uncertainty. Automation of Electric Power Systems, 39(14):105-113+132, 2015.
  • [24] Y. Sun, P. Zhu, and Y. Yuan. Reliablity evaluation based on dynamic island MILP model of active distribution network. Electric Power Construction, 40(5):90-97, 2019.
  • [25] V. Hosseinnezhad, M. Rafiee, M. Ahmadian, and P. Siano. Optimal island partitioning of smart distribution systems to improve system restoration under emergency conditions. International Joumal of Electrical Power and Energy Systems, 97:155-164, 2018.
  • [26] K. Das, A. Nitsas, M. Altin, A.D. Hansen, and E.S. Poul. Improved load-shedding scheme considering distributed generationn. In 2017 IEEE Manchester PowerTech, 2017.
  • [27] R. Caldon, A. Stocco, and R. Turri. Feasibility of adaptive intentional operation of electric utility systems with distributed generation. Electric Power systems Research, 78(12):2017-2023, 2008.
  • [28] S. Conti, R. Nico, S.A. Rizzo, and H.H. Zeineldin. Optimal dispatching of distributed generators and storage systems for MV island microgrids. IEEE Transactions on Power Delivery, 27(3):1243-1251, 2012.
  • [29] M. Abdelaziz. Distribution network reconfigurration using a genetic algorithm with varying population size. Electric Power Systems Research, 142:9-11, 2017.
  • [30] A. Elmitwally, M. Elsaid, M. Elgamal, and Z. Chen. A fuzzy-multiagent service restoration scheme for distribution system with distributed generation. IEEE Transactions on Sustainable Energy, 6(3):810-821, 2015.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e612fb43-41c0-42e9-b832-d22e8670416b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.