Czasopismo
2014
|
Vol 54, No. 1
|
141--145
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we have defined the weakly symmetric generalized Trans-Sasakian manifold G(WS)n and it has been shown that on such manifold if any two of the vector fields λ,γ,τ, defined by equation (0.3) are orthogonal to ξ, then the third will also be orthogonal to ξ. We have also proved that the scalar curvature r of weakly symmetric generalized Trans-Sasakian manifold G(WS)n, (n>2) satisfies the equation r=2n(α2−β2), where α and β are smooth function and γ≠τ.
Czasopismo
Rocznik
Tom
Strony
141--145
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
- Department of Mathematics, Kent State University New Philadelphia, OH 44663, U.S.A., ldas@tusc.kent.edu
autor
- Department of Mathematics and Astronomy, Lucknow University Lucknow-226007, India, rnivas@sify.com
autor
- Department of Mathematics and Astronomy, Lucknow University Lucknow-226007, India, agnihotrirupali@gmail.com
Bibliografia
- [1] L. Tamassy and T. Q. Binh: On wealy symmetric and weakly projective symmetric Riemannian manifold, Colloq. Math. Janos Bolayi 56 (1989), 663–670.
- [2] U. C. De and M. M. Tripathi: Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J. 43 (2003), 1–9.
- [3] M.C. Chaki: On pseudo Ricci symmetric manifolds, Bulg. J. Phys. 15 (1988), 526–531.
- [4] S. Sasaki: Lecture Notes on Almost contact manifolds Part I, Tohoku University, Tohoku, 1965.
- [5] S. Sasaki: Lecture Notes on Almost contact manifolds Part II, Tohoku University, Tohoku, 1967.
- [6] D. E. Blair: Contact manifold in Riemannian geometry, Lecture Notes in Mathematics no. 509, Springer Verlag, 1966.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e5f3a788-9276-4336-afbe-ff39c2cf6da3