Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | Vol. 71, no. 3 | 1173--1185
Tytuł artykułu

Integrated observations on crustal strain‑ionosphere total electron content anomalies before the earthquake

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Changes in strain (Linear and triangular) rate and Ionosphere Total Electron Content (TEC) before Mw 7.9 2018 Alaska Earthquake are investigated. Ten years of global positioning system (GPS) time series solutions were used for strain estimation in the region before the occurrence of the earthquake using the Haversine formula and triangulation method. Linear strain values suggest an anomaly in strain variation trend near the epicenter. Additionally, daily TEC variations for 30 days before the earthquake occurred were monitored and analysed. Analysis suggests TEC depletion on December 26 2017, and January 16 2018, respectively. TEC values from 60 GPS stations data were interpolated to study the spatial variations of TEC anomaly. Hourly TEC data derived from GPS stations on December 26 2017, and January 16 2018, suggest low TEC zone concentration near to the earthquake epicenter during 1 to 4 UTC. Spatial distribution of TEC values in 2-Dimension corresponding to anomaly time at 60 GPS stations in the vicinity of study area suggests lowest TEC values at stations that lie closer to the epicenter. The study suggests Lithosphere-Ionosphere coupling before Mw 7.9 2018 Alaska Earthquake and recommends developing a TEC-Strain Monitoring System for further validation of the work and for the better study of earthquake precursors based on TEC-Strain anomalies.
Wydawca

Czasopismo
Rocznik
Strony
1173--1185
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
Bibliografia
  • 1. Abba I, Abidin WAWZ, Masri T, Ping KH, M S M, B V P, (2015) Ionospheric effects on Gps signal in low–low–latitude region : a Niger. J Technol 34:523–529
  • 2. Adewale AO, Oyeyemi EO, Adeniyi JO, Adeloye AB, Oladipo OA (2011) Comparison of total electron content predicted using the IRI-2007 model with GPS observations over Lagos. Nigeria Indian J Radio Sp Phys 40:21–25
  • 3. Akasofu SI (1981) Prediction of development of geomagnetic storms using the solar wind-magnetosphere energy coupling funtion. Planet Sp. Sci. 29:1151–1158
  • 4. Akyol AA, Arikan O, Arikan F (2020) A machine learning-based detection of earthquake precursors using ionospheric data. Radio Sci 55:1–21. https://doi.org/10.1029/2019RS006931
  • 5. Bibby HM (1975) Crustal strain from triangulation in Malborough, New Zeland. Tectonophysics 29:529–540. https://doi.org/10.1016/0040-1951(75)90180-8
  • 6. Blewitt G (1990) An automatic editing algorithm for GPS data. Geop 17:199–202. https://doi.org/10.1109/WPNC.2008.4510355
  • 7. Blewitt G, Kreemer C, Hammond WC, Gazeaux J (2016) MIDAS robust trend estimator for accurate GPS station velocities without step detection. J Geophys Res Solid Earth 121:2054–2068. https://doi.org/10.1002/2015JB012552
  • 8. Blewitt G, Hammond WC, Kreemer C (2018) Harnessing the GPS data explosion for interdisciplinary science. Eos, Washington, DC
  • 9. Buonsanto MJ, Fuller-Rowell TJ (1997) Strides made in understanding space weather at Earth. EOS Trans 78:1–7. https://doi.org/10.1029/97EO00002
  • 10. Calais E, Bernard J (1995) GPS detection of ionospheric perturbations following the january 17, 1994, Northridge earthquake. Geophys Res Lett 22:1045–1048. https://doi.org/10.1029/95GL00168
  • 11. Chetia T, Sharma G, Dey C, Raju PLN (2020) Multi-parametric approach for earthquake precursor detection in Assam valley (Eastern Himalaya, India) using satellite and ground observation data. Geotectonics 54:83–96. https://doi.org/10.1134/S0016852120010045
  • 12. Cronin VS, Resor PG, Hammond WC, Kreemer CW, Olds SE, Pratt-Sitaula B, West NW (2012) Developing a curricular module for introductory geophysics or structural geology courses to quantify crustal strain using EarthScope PBO GPS velocities, In: AGU Fall Meeting Abstracts. pp. ED41B-0681
  • 13. Danilov AD (2001) F2-region response to geomagnetic disturbances. J Atmos Solar-Terrestrial Phys 63:441–449. https://doi.org/10.1016/s1364-6826(00)00175-9
  • 14. Dautermann T, Calais E, Haase J, Garrison J (2007) Investigation of ionospheric electron content variations before earthquakes in southern California, 2003–2004. J Geophys Res Solid Earth 112:2003–2004. https://doi.org/10.1029/2006JB004447
  • 15. Dogan U, Ergintav S, Skone S, Arslan N, Oz D (2011) Monitoring of the ionosphere TEC variations during the 17th August 1999 Izmit earthquake using GPS data. Earth Planets Sp 63:1183–1192. https://doi.org/10.5047/eps.2011.07.020
  • 16. Dumka RK, Kotlia BS, SuriBabu D, Narain P, Prajapati S (2019) Present-day crustal deformation and geodetic strain in the vicinity of Dholavira–Harappan civilization site, Kachchh, western part of the Indian plate. Quat Int 507:324–332. https://doi.org/10.1016/j.quaint.2018.10.035
  • 17. Enderle G, Bechler KH, Grimme H, Hieber W, Katz F (1982). GIPSY user manual. Volume II.
  • 18. Feldstein YI, Grafe A, Pisarsky VY, Prigansova A, Sumaruk PV (1990) Magnetic field of the magnetospheric ring current and its dynamics during magnetic storms. J Atmos Terr Phys 52:1185–1191. https://doi.org/10.1016/0021-9169(90)90086-3
  • 19. Freund FT, Kulahci IG, Cyr G, Ling J, Winnick M, Tregloan-Reed J, Freund MM (2009) Air ionization at rock surfaces and preearthquake signals. J Atmos Solar-Terrestrial Phys 71:1824–1834. https://doi.org/10.1016/j.jastp.2009.07.013
  • 20. Fuller-Rowell TJ, Codrescu MV, Moffett RJ, Quegan S (1994) Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res Sp Phys 99:3893–3914. https://doi.org/10.1029/93JA02015
  • 21. Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM (1994) What is a geomagnetic storm? J Geophys Res 99:5771. https://doi.org/10.1029/93ja02867
  • 22. Grant RA, Raulin JP, Freund FT (2015) Changes in animal activity prior to a major (M = 7) earthquake in the Peruvian Andes. Phys Chem Earth 85–86:69–77. https://doi.org/10.1016/j.pce.2015.02.012
  • 23. Gurtner W (1994) Innovation: rinex–the receiver independent exchange format. GPS World 5:48–53
  • 24. Heki K, Enomoto Y (2013) Preseismic ionospheric electron enhancements revisited. J Geophys Res Sp Phys 118:6618–6626. https://doi.org/10.1002/jgra.50578
  • 25. Jhuang HK, Ho YY, Kakinami Y, Liu JY, Oyama KI, Parrot M, Hattori K, Nishihashi M, Zhang D (2010) Seismo-ionospheric anomalies of the GPS-TEC appear before the 12 May 2008 magnitude 8.0 Wenchuan earthquake. Int J Remote Sens 31:3579–3587. https://doi.org/10.1080/01431161003727796
  • 26. Jin S, Jin R, Li JH (2014) Pattern and evolution of seismo-ionospheric disturbances following the 2011 Tohoku earthquakes from GPS observations. J Geophys Res Sp Phys 119:7914–7927. https://doi.org/10.1002/2014JA019825
  • 27. Kannaujiya S, Yadav RK, Champati PK, Sarkar T, Sharma G, Chauhan P, Pal SK, Roy PNS, Gautam PK, Taloor AK, Yadav A (2022) Unraveling seismic hazard by estimating prolonged crustal strain buildup in Kumaun-Garhwal, Northwest Himalaya using GPS measurements. J Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2021.104993
  • 28. Kersley L, Malan D, Pryse SE, Cander LR, Bamford RA, Belehaki A, Leitinger R, Radicella SM, Mitchell CN, Spencer PSJ (2009) Total electron content: a key parameterin propagation: measurement and usein ionospheric imaging. Ann Geophys. https://doi.org/10.4401/ag-3286
  • 29. Klobuchar JA (1985) Ionospheric time delay effects on earth space propagation. Handbook of geophysics and the space environment, Jursa A S US Air Force, Washington DC
  • 30. Koehler R D (2013) Quaternary faults and folds (QFF): Alaska Division of Geological & Geophysical Surveys Digital Data Series 3. http://doi.org/https://doi.org/10.14509/qff. https://doi.org/10.14509/24956
  • 31. Kumar S, Singh AK (2012) Effect of solar flares on ionospheric TEC at varanasi, near EIA crest, during solar minimum period. Indian J Radio Sp Phys 41:141–147
  • 32. Liu JY, Chuo YJ, Shan SJ, Tsai YB, Chen YI, Pulinets SA, Yu SB (2004) Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann Geophys 22:1585–1593. https://doi.org/10.5194/angeo-22-1585-2004
  • 33. Loewe CA, Prölss GW (1997) Classification and mean behavior of magnetic storms. J Geophys Res. https://doi.org/10.1029/96JA04020
  • 34. Mansilla GA (2019) Behavior of the total electron content over the Arctic and Antarctic sectors during several intense geomagnetic storms. Geod Geodyn 10:26–36. https://doi.org/10.1016/j.geog.2019.01.004
  • 35. Menard HW, Dietz RS (1951) Submarine geology of the Gulf of Alaska. Geol Soc Am Bull 62:1263–1285
  • 36. National Atlas of the United States (2005) Fault Lines, Alaska: Generalized Geologic Map of Alaska, Hawaii, Puerto Rico, and the U.S. Virgin Islands. http://purl.stanford.edu/mh719vx4646
  • 37. Ndeda JOH, Odera PO (2014) Analysis of longitudinal advancement of the peak total electron content in the African equatorial anomaly region using data from GPS receivers and GIS stations in Kenya. Appl Phys Res 6:19–25. https://doi.org/10.5539/apr.v6n1p19
  • 38. Oikonomou C, Haralambous H, Muslim B (2016) Investigation of ionospheric TEC precursors related to the M7.8 Nepal and M8.3 Chile earthquakes in 2015 based on spectral and statistical analysis. Nat Hazards 83:97–116. https://doi.org/10.1007/s11069-016-2409-7
  • 39. Pan Z, Yun Z, Shao Z (2020) Contemporary crustal deformation of Northeast Tibet from geodetic investigations and a comparison between the seismic and geodetic moment release rates. Phys Earth Planet Inter. https://doi.org/10.1016/j.pepi.2020.106489
  • 40. Priyadarshi S, Kumar S, Singh AK (2011) Changes in total electron content associated with earthquakes (M > 5) observed from GPS station, Varanasi, India. Geomatics. Nat Hazards Risk 2:123–139. https://doi.org/10.1080/19475705.2011.563390
  • 41. Pulinets S (2004) Ionospheric precursors of earthquakes; recent advances in theory and practical applications. Tao 15:413–435
  • 42. Pulinets SA, Contreras AL, Bisiacchi-Giraldi G, Ciraolo L (2005) Total eletron content variations in the ionosphere before the Colima Mexico earthquake 21 January 2003. Geofis Int. https://doi.org/10.22201/igeof.00167169p.2005.44.4.237
  • 43. Shah M, Jin S (2015) Statistical characteristics of seismo-ionospheric GPS TEC disturbances prior to global Mw≥5.0 earthquakes (1998–2014). J Geodyn 92:42–49. https://doi.org/10.1016/j.jog.2015.10.002
  • 44. Sharma G (2022) Manifestation of earthquake preparation zone in the ionosphere before the earthquake revealed by GPS e TEC data, a case of 2021 Sonitpur, Assam earthquake. Geod Geodyn. https://doi.org/10.1016/j.geog.2021.09.010
  • 45. Sharma G, Champati rayMohanty PKS (2018) Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India. Geomorphology 301:108–120. https://doi.org/10.1016/j.geomorph.2017.11.002
  • 46. Sharma G, Champati rayMohantyKannaujiya PKSS (2017) Ionospheric TEC modelling for earthquakes precursors from GNSS data. Quat Int 462:65–74. https://doi.org/10.1016/j.quaint.2017.05.007
  • 47. Sharma G, Champati rayMohantyGuatam PKSPKR, Kannaujiya S (2017) Global navigation satellite system detection of preseismic ionospheric total electron content anomalies for strong magnitude (Mw>6) Himalayan earthquakes. J Appl Remote Sens 11:1. https://doi.org/10.1117/1.JRS.11.046018
  • 48. Sharma G, Mohanty S, Champatiray PK, Singh MS, Sarma KK, Raju PLN (2018) Ionospheric total electron content and epicentra distance 2015 of Gorkha earthquake revealed by GNSS observations. Current Sci 115(1):27–29. https://doi.org/10.18520/cs/v115/i1/27-29
  • 49. Sharma G, Kannaujiya S, Gautam PKR, Taloor AK, Champatiray PK, Mohanty S (2021) Crustal deformation analysis across Garhwal Himalaya: part of western Himalaya using GPS observations. Quat Int 575–576:153–159. https://doi.org/10.1016/j.quaint.2020.08.025
  • 50. Sharma G, Soubam M, Walia D, Nishant N, Sarma KK, Raju PLN (2021) Development of a monitoring system for ionospheric TEC variability before the earthquakes. Appl Comput Geosci. https://doi.org/10.1016/j.acags.2020.100052
  • 51. Shi K, Guo J, Liu X, Liu L, You X, Wang F (2020) Seismo-ionospheric anomalies associated with Mw 7.8 Nepal earthquake on 2015 April 25 from CMONOC GPS data. Geosci J 24:391–406. https://doi.org/10.1007/s12303-019-0038-3
  • 52. Shuang-Gen J, Wang J, Hong-Ping Z, Wen-Yao Z (2004) Real-time monitoring and prediction of ionospheric electron content by means of GPS. Chinese Astron Astrophys 28:331–337. https://doi.org/10.1016/j.chinastron.2004.07.008
  • 53. Tseng WK, Chang WJ (2014) Analogues between 2D linear. J Navig 67:101–112. https://doi.org/10.1017/S0373463313000532
  • 54. Wilson FH, Hults CP, Mull CG, Karl SM (2015) Geologic map of Alaska: U.S. Geological Survey Scientific Investigations Map 3340, pamphlet 196 p., 2 sheets, scale 1:1,584,000, http://dx.doi.org/https://doi.org/10.3133/sim3340
  • 55. Zhang DH, Xiao Z, Igarashi K, Ma GY (2002) GPS-derived ionospheric total electron content response to a solar flare that occurred on 14 July 2000. Radio Sci. https://doi.org/10.1029/2001rs002542
  • 56. Zheng G, Wang H, Wright TJ, Lou Y, Zhang R, Zhang W, Shi C, Huang J, Wei N (2017) Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. J Geophys Res Solid Earth 122:9290–9312. https://doi.org/10.1002/2017JB014465
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e5d99391-4f99-48c3-9dff-bfe4bab0f44c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.