Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 2 | art. no. e80, 2023
Tytuł artykułu

Effect of chromium doping on the structure and mechanical properties of anti‑wear TiB2 coatings

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
TiB2-based coatings have been intensively developed due to their physical and mechanical properties, including excellent thermal stability and high hardness with good abrasion and corrosion resistance, which appear to be the most beneficial in industrial application. Previous investigations have shown that doping TiB2 with W, Ni and C can significantly reduce residual stresses and improve adhesion, making these coatings ideal on tools to machining aluminum alloys. The aim of this study was to analyze the effect of an Cr interlayer on the durability (adhesion) of the fabricated Ti1−xCrxB2 (x = 0; 0.03; 0.06; 0.10) films and determine the influence of Cr on their microstructure and mechanical properties. The structural characterization of Ti1−xCrxB2 coatings was carried out using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and atomic force microscopy. To investigate the mechanical properties, nano-scratch and-hardness tests (NST, NHT) were performed, and fracture toughness of the substrate layer systems was determined. The use of an adhesive layer of pure Cr increased the adhesion of the coatings to the substrate. It is shown that the changes in Cr content not only affect the microstructure, mainly by decreasing the crystallite size (column width), but also the texture (preferred film orientation) and phase composition. The addition of chromium also has an effect on the mechanical properties of TiB2 films by reducing their hardness and Young’s modulus and increasing their fracture toughness (KIC).
Słowa kluczowe
Wydawca

Rocznik
Strony
art. no. e80, 2023
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30‑059 Krakow, Poland, lukasz.cieniek@agh.edu.pl
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30‑059 Krakow, Poland, edytachudzik@gmail.com
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30‑059 Krakow, Poland, tomasz.moskalewicz@agh.edu.pl
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30‑059 Krakow, Poland, kopia@agh.edu.pl
Bibliografia
  • 1. Koszela W, Pawlus P, Reizer R, Liskiewicz T. The combined effect of surface texturing and DLC coating on the functional-properties of internal combustion engines. Tribol Int. 2008;127:470-7. https://doi.org/10.1016/j.triboint.2018.06.034.
  • 2. Cernuschi F, Bison P, Mack DE, Merlini M, Boldrini S, Marchionna S, Capelli S, Concari S, Famengo A, Moscatelli A, Stamm W. Thermo-physical properties of as deposited and aged thermal barrier coatings (TBC) for gas turbines: state-of-the art and advanced TBCs. J Eur Ceram Soc. 2018;38(11):3945-61. https://doi.org/10.1016/j.jeurceramsoc.2018.04.044.
  • 3. Vereschaka A, Aksenenko A, Sitnikov N, Migranov M, Shevchenko S, Sotova C, Batako A, Andreev N. Effect of adhesion and tribological properties of modified composite nanostructured multi-layer nitride coatings on WC-Co tools life. Tribol Int. 2018;128:313-27. https://doi.org/10.1016/j.triboint.2018.07.039.
  • 4. Munro RG. Material properties of titanium diboride. J Res Natl Inst Stand Technol. 2000;105:709-20. https://doi.org/10.6028/jres.105.057.
  • 5. Berger M, Coronel E, Olsson E. Microstructure of d.c. magnetron sputter TiB2 coatings. Surf Coat Technol. 2004;185:240-4. https://doi.org/10.1016/j.surfcoat.2003.12.029.
  • 6. Kullmer R, Lugmair C, Figueras A, Bassas J, Stoiber M, Mitterer C. Microstructure, mechanical and tribological properties of PACVD Ti(B, N) and TiB2 coatings. Surf Coat Technol. 2003;1229:174-5. https://doi.org/10.1016/s0257-8972(03)00532-2.
  • 7. Smolik J, Mazurkiewicz A, Garbacz H, Kopia A. Tungsten doped TiB2 coatings obtained by magnetron sputtering. J Mach Constr Maint. 2018;4:27-32.
  • 8. Lubas J. Assessment and application of TiB2 coating in sliding pair under lubrication conditions. Wear. 2012;296:504-9. https://doi.org/10.1016/j.wear.2012.08.005.
  • 9. Panjan P, Drnovšek A, Kovać J. Tribological aspects related to the morphology of PVD hard coatings. Surf Coat Technol. 2018;343:138-47. https://doi.org/10.1016/j.surfcoat.2017.09.084.
  • 10. Panich N, Wangyao P, Visuttipitukul P, Sricharoenchai P, Sun Y. Improvement in adhesion of sputtered TiB2 nano-compostite coatings onto high speed steel by a chromium interlayer. Mater Trans. 2008;49:2331-4. https://doi.org/10.2320/matertrans.MRA2008107.
  • 11. Ye Y, Liu Z, Liu W, Zhang D, Wang Y, Zhao H, Li X. Effect of interlayer design on friction and wear behaviors of CrAlSiN coating under high load in seawater. RSC Adv. 2018;8:5596-607. https://doi.org/10.1039/C7RA12409K.
  • 12. Akhter R, Zhou Z, Xie Z, Munroe P. Enhancing the adhesion strength and wear resistance of nanostructured NiCrN coatings. Appl Surf Sci. 2021;541:148533. https://doi.org/10.1016/j.apsusc.2020.148533.
  • 13. Ali A, Ahmad SN. Mechanical and tribological behavior of TiB2/Al2O3 coating on high-speed steel using electron beam deposition. Trib Intern. 2022;174:107681. https://doi.org/10.1016/j.triboint.2022.107681.
  • 14. Park B, Jung D-H, Kim H, Yoo K-C, Lee J-J, Joo J. Adhesion properties of TiB2 coatings on nitrided AISI H13 steel. Surf Coat Technol. 2005;200:726-9. https://doi.org/10.1016/j.surfcoat.2005.01.064.
  • 15. Ozkan D. Friction and wear enhancement of magnetron sputtered bilayer Cr-N/TiB2 thin-film coatings. Wear. 2020;454-455:203344. https://doi.org/10.1016/j.wear.2020.203344.
  • 16. Gruber DP, Zalesak J, Todt J, Tkadletz M, Sartory B, Suuronen J-P, Ziegelwanger T, Czettl C, Mitterer C, Keckes J. Surface oxidation of nanocrystalline CVD TiB2 hard coatings revealed by cross-sectional nano-analytics and in-situ micro-cantilever testing. Surf Coat Technol. 2020;399:126181. https://doi.org/10.1016/j.surfcoat.2020.126181.
  • 17. Wang H, Wang B, Li S, Xue Q, Huang F. Toughening magnetron sputtered TiB2 coatings by Ni addition. Surf Coat Technol. 2013;232:767-74. https://doi.org/10.1016/j.surfcoat.2013.06.094.
  • 18. Contreras E, Galindez Y, Gomez MA. Microstructure, mechanical and tribological properties of TiBC coatings by DC magnetron sputtering onto AISI M2 steel using independent TiB2 and graphite targets. Surf Coat Technol. 2018;350:298-306. https://doi.org/10.1016/j.surfcoat.2018.05.079.
  • 19. Chudzik-Poliszak E, Cieniek Ł, Moskalewicz T, Kowalski K, Kopia A, Smolik J. Influence of W addition on microstructure and resistance to brittle cracking of TiB2 coatings deposited by DCMS. Materials. 2021;14:4664. https://doi.org/10.3390/ma14164664.
  • 20. Huang X, Sun S, Tu G. Investigation of mechanical properties and oxidation resistance of CVD TiB2 ceramic coating on molybdenum. J Mat Res Tech. 2020;9(1):282-90. https://doi.org/10.1016/j.jmrt.2019.10.056.
  • 21. Elders J, Quist PA, Rooswijk B, Voorst JDW, Nieuwkoop J. CO2-laser-induced chemical vapour deposition of TiB2. Surf Coat Technol. 1991;45:105-13. https://doi.org/10.1142/S0218625X1250045X.
  • 22. Berger M, Larsson M, Hogmark S. Evaluation of magnetron-sputtered TiB2 intended for tribological applications. Surf Coat Technol. 2000;124:253-61. https://doi.org/10.1016/S0257-8972(99)00638-6.
  • 23. Panich N, Sun Y. Effect of substrate rotation on structure, hardness and adhesion of magnetron sputtered TiB2 coating on high speed steel. Thin Solid Films. 2006;500:190-6. https://doi.org/10.1016/j.tsf.2005.11.055.
  • 24. Kelesoglu E, Mitteter C. Structure and properties of TiB2 based coatings prepared by unbalanced DC magnetron sputtering. Surf Coat Technol. 1998;98:1483-9. https://doi.org/10.1016/S0257-8972(97)00397-6.
  • 25. Xu Y, Yamazaki M, Villars P. Inorganic materials database for exploring the nature of material. Jpn J Appl Phys. 2011;50:11RH02. https://doi.org/10.1143/JJAP.50.11RH02.
  • 26. Cybroń J. Residual stress analysis after machining in composite materials based on aluminum alloy with ceramic additive. Mechanik. 2018;1:28-30. https://doi.org/10.17814/mechanik.2018.1.4.
  • 27. Burton AW, Ong K, Rea T, Chan I. On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater. 2009;117:75-90. https://doi.org/10.1016/j.micromeso.2008.06.010.
  • 28. Smolik J, Kacprzyńska-Gołacka J, Sowa S, Piasek A. The analysis of resistance to brittle cracking of tungsten doped TiB2 coatings obtained by magnetron sputtering. Coatings. 2020;10:807. https://doi.org/10.3390/coatings10090807.
  • 29. Thornberg J, Palisaitis J, Hellgren N, Klimashin F, Ghafoor N, Zhirkov I, Azina C, et al. Microstructure and materials properties of understoichiometric TiBx thin films grown by HiPIMS. Surf Coat Technol. 2020;404:126537. https://doi.org/10.1016/j.surfcoat.2020.126537.
  • 30. Newirkowez A, Cappi B, Telle R, Schmidt H. (Ti, W, Cr)B2 coatings produced by dc magnetron sputtering. Thin Solid Films. 2012;520:1775-8. https://doi.org/10.1016/j.tsf.2011.08.071.
  • 31. Nafsin N, Castro RHR. Direct measurements of quasi-zero grain boundary energies in ceramics. J Mater Res. 2017;32:166-73. https://doi.org/10.1557/jmr.2016.282.
  • 32. Sanchez CMT, Rebollo Plata B, Maia da Costa MEH, Freire FL Jr. Titanium diboride thin films produced by dc-magnetron sputtering: structural and mechanical properties. Surf Coat Technol. 2011;205:3698-702. https://doi.org/10.1016/j.surfcoat.2011.01.014.
  • 33. Guzelcimen F, Tanoren B, Cetinkaya C, Donmez M, Efkere HI, Ozen Y, Bingol D, et al. The effect of thickness on surface structure of RF sputtered TiO2 thin films by XPS, SEM/EDS, AFM and SAM. Vacuum. 2020;182:109766. https://doi.org/10.1016/j.vacuum.2020.109766.
  • 34. Lofaj F, Moskalewicz T, Cempura G, Mikula M, Dusza J, Czyrska-Filemonowicz A. Nanohardness and tribological properties of nc-TiB2 coatings. J Eur Ceram Soc. 2013;33:2347-53. https://doi.org/10.1016/j.jeurceramsoc.2013.02.024.
  • 35. Charitidis C, Panayiotatos Y, Logothetidis S. A quantitative study of the nano-scratch behavior of boron and carbon nitride films. Diam Relat Mater. 2003;12:1088-92. https://doi.org/10.1016/S0925-9635(02)00268-6.
  • 36. Chen X, Du Y, Chung YW. Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings. Thin Solid Films. 2019;688:137265. https://doi.org/10.1016/j.tsf.2019.04.040.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e5c7c51c-6edf-4147-8111-7d84ef71a3af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.