Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 2 | 341--350
Tytuł artykułu

Reduction in Carbon Dioxide Production of Tropical Peatlands Under Nitrogen Fertilizer with Coal Fly Ash Application

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The utilization of nitrogen (N) fertilizer in peatlands, with the aim of increasing crop growth and production, is also reported to increase carbon dioxide (CO2) emissions. The application of coal fly ash (CFA) to soil may change soil physico-chemical characteristics, thereby influence carbon mineralization, but its effect on CO2 production is not yet clear. Consequently, the purpose of this study was to quantify the CO2 production of tropical peatlands that received N fertilizer and CFA. In the laboratory experiment, CFA equivalent to the application of 150 Mg•ha−1 in the field was added to peatlands with and without N fertilizer. These mixtures were then incubated at 70% waterfilled pore space (WFPS) for 30 days at room temperature. Carbon mineralization was measured on a 5-day basis, while several chemical characteristics of treated peatlands, including pH, hot water-soluble C, exchangeable-Ca, -Mg, -Fe, and -Al were measured at the conclusion of the incubation period. This study identified that N fertilizer application increased the CO2 production of tropical peatlands from 29.25 g•kg−1 to 37.12 g•kg−1. Furthermore, the application of CFA on tropical peatlands reduced CO2 production of tropical peatlands with and without N fertilizer. Decreasing the amount of hot water-soluble carbon from peatlands may account for the reduced CO2 production of peatlands with CFA. The study also showed that exchangeable-Ca, -Mg, -Fe, and -Al increased in peatlands with CFA application, and these multivalent cations were also attributed to a reduction of CO2 production. In conclusion, the negative effects of N fertilizer application on peatlands in increasing CO2 emission may be reduced by the application of CFA.
Wydawca

Rocznik
Strony
341--350
Opis fizyczny
Bibliogr. 66 poz., rys., tab.
Twórcy
  • Department of Soil, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru, Kalimantan Selatan 70714, Indonesia, bj_priatmadi@ulm.ac.id
  • Doctoral Program of Agricultural Science, Postgraduate Program Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru, Kalimantan Selatan 70714, Indonesia
  • Department of Soil, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru, Kalimantan Selatan 70714, Indonesia
  • Department of Agroecotechnology, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru, Kalimantan Selatan 70714, Indonesia
  • Department of Soil, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru, Kalimantan Selatan 70714, Indonesia
autor
  • Department of Soil, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru, Kalimantan Selatan 70714, Indonesia
  • Department of Soil, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru, Kalimantan Selatan 70714, Indonesia
  • Department of Soil, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru, Kalimantan Selatan 70714, Indonesia
  • Department of Soil, Faculty of Agriculture, Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru, Kalimantan Selatan 70714, Indonesia
  • Doctoral Program of Agricultural Science, Postgraduate Program Lambung Mangkurat University, Jalan A. Yani KM 36, Simpang Empat Banjarbaru, Kalimantan Selatan 70714, Indonesia
Bibliografia
  • 1. Barnhisel R., Bertsch P.M. 1982. Aliminium. In: Page, A.L. and Miller, R.H. and Keeney, D.R. (eds.) Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc., Soil Science Society of America, Inc. Wisconsin, USA, pp 275-300.
  • 2. Belyaeva O.N., Haynes R.J. 2009. Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash. Bioresource Technology, 10021, 5203-5209. https://doi.org/10.1016/j.biortech.2009.05.032
  • 3. Bhatt A., Priyadarshini S., Acharath Mohanakrishnan A., Abri A., Sattler M., Techapaphawit S. 2019. Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Studies in Construction Materials, 11, e00263. https://doi.org/10.1016/j.cscm.2019.e00263
  • 4. Blake G.R., Hartge K.H. 1986. Bulk density. In: Klute, A. (ed.) Methods of Soil Analysis Part 1: Physical and Mineralogical Methods. American Society of Agronomy-Soil Science Society of America, Inc. Madision, WI., pp 363-375.
  • 5. Bremer J.M., Mulvaney C.S. 1982. Nitrogen-total. In: Page, A.L. and Keeney, D.R. (eds.) Methods of Soil Analysis Part 2: Chemical and Biological Methods. Soil Science Society of America Inc. Madison WI., pp 595-709.
  • 6. Das S., Richards B.K., Hanley K.L., Krounbi L., Walter M.F., Walter M.T., Steenhuis T.S., Lehmann J. 2019. Lower mineralizability of soil carbon with higher legacy soil moisture. Soil Biology and Biochemistry, 130, 94-104. https://doi.org/10.1016/j.soilbio.2018.12.006
  • 7. Hendrizal M., Kurnianto S., Suardiwerianto Y., Salam Y.W., Agus F., Astiani D., Sabiham S., Gauci V., Evans C.D. 2021. Conservation slows down emission increase from a tropical peatland in Indonesia. Nature Geoscience, 147, 484-490. https://doi.org/10.1038/s41561-021-00785-2
  • 8. Dwibedi S.K., Sahu S.K., Pandey V.C., Rout K.K., Behera M. 2023. Seedling growth and physicochemical transformations of rice nursery soil under varying levels of coal fly ash and vermicompost amendment. Environmental Geochemistry and Health, 452, 319-332. https://doi.org/10.1007/s10653-021-01074-y
  • 9. El-Naggar A., Lee S.S., Awad Y.M., Yang X., Ryu C., Rizwan M., Rinklebe J., Tsang D.C.W., Ok Y.S. 2018. Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma, 332, 100-108. https://doi.org/10.1016/j.geoderma.2018.06.017
  • 10. Fiałkiewicz-Kozieł B., Smieja-Król B., Ostrovnaya T.M., Frontasyeva M., Siemińska A., Lamentowicz M. 2015. Peatland microbial communities as indicators of the extreme atmospheric dust deposition. Water, Air, & Soil Pollution, 2264, 97. https://doi.org/10.1007/s11270-015-2338-1
  • 11. Galicia-Andrés E., Escalona Y., Oostenbrink C., Tunega D., Gerzabek M.H. 2021. Soil organic matter stabilization at molecular scale: The role of metal cations and hydrogen bonds. Geoderma, 401, 115237. https://doi.org/10.1016/j.geoderma.2021.115237
  • 12. Gao S., Song Y., Song C., Wang X., Ma X., Gao J., Cheng X., Du Y. 2022. Effects of temperature increase and nitrogen addition on the early litter decomposition in permafrost peatlands. CATENA, 209, 105801. https://doi.org/10.1016/j.catena.2021.105801
  • 13. Grandy A.S., Erich M.S., Porter G.A. 2000. Suitability of the anthrone-sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts. Soil Biology & Biochemistry, 325, 725-727. https://doi.org/10.1016/S0038-0717(99)00203-5
  • 14. He H., Dong Z., Peng Q., Wang X., Fan C., Zhang X. 2017. Impacts of coal fly ash on plant growth and accumulation of essential nutrients and trace elements by alfalfa (Medicago sativa) grown in a loessial soil. Journal of Environmental Management, 197, 428-439. https://doi.org/10.1016/j.jenvman.2017.04.028
  • 15. Hermawan A., Napoleon A., Bakri B. 2019. Physical properties of briquette fertilizers made from urea and fly ash-Azolla. Journal of Tropical Soils, 233, 143-150. http://dx.doi.org/10.5400/jts.2018.v23i3.143-150
  • 16. Ichriani G.I., Sulistiyanto Y., Chotimah H.E.N.C. 2021. The use of ash and biochar derived oil palm bunch and coal fly ash for improvement of nutrient availability in peat soil of Central Kalimantan. Journal of Degraded and Mining Lands Management, 83, 2703. https://www.doi.org/10.15243/jdmlm.2021.083.2703
  • 17. Kaur R., Goyal D. 2015. Mineralogical studies of coal fly ash for soil application in agriculture. Particulate Science and Technology, 331, 76-80. https://doi.org/10.1080/02726351.2014.938378
  • 18. Knudsen D., Peterson G.A. 1982. Lithium, sodium dan potassium. In: Page, A.L. and Miller, R.H. and Keeney, D.R. (eds.) Methods of Soil Analysis: Part 2 Chemical and Biological Properties. American Society of Agronomy, Inc., Soil Science Society of America, Inc. Madison, pp 225-246.
  • 19. Lanyon L.E., Heald W.R. 1982. Magnesium, calcium, strintium and barium. In: Page, A.L. and Miller, R.H. and Keeney, D.R. (eds.) Methods of Soil Analysis: Part 2 Chemical and Biological Properties. American Society of Agronomy, Inc., Soil Science Society of America, Inc. Madison, pp 247-274.
  • 20. Laxmidhar P., Subhakanta D. 2020. Characterization and utilization of coal fly ash: a review. Emerging Materials Research, 93, 921-934. https://doi.org/10.1680/jemmr.18.00097
  • 21. Lim S.-S., Choi W.-J. 2014. Changes in microbial biomass, CH4 and CO2 emissions, and soil carbon content by fly ash co-applied with organic inputs with contrasting substrate quality under changing water regimes. Soil Biology and Biochemistry, 68, 494-502. https://doi.org/10.1016/j.soilbio.2013.10.027
  • 22. Lim S.S., Choi W.J., Chang S.X., Arshad M.A., Yoon K.S., Kim H.Y. 2017. Soil carbon changes in paddy fields amended with fly ash. Agriculture, Ecosystems & Environment, 245, 11-21. https://doi.org/10.1016/j.agee.2017.03.027
  • 23. Liu M., Ding Y., Peng S., Lu Y., Dang Z., Shi Z. 2019. Molecular fractionation of dissolved organic matter on ferrihydrite: effects of dissolved cations. Environmental Chemistry, 162, 137-148. https://doi.org/10.1071/EN18235
  • 24. Luo L., Yu J., Zhu L., Gikas P., He Y., Xiao Y., Deng S., Zhang Y., Zhang S., Zhou W., Deng O. 2022. Nitrogen addition may promote soil organic carbon storage and CO2 emission but reduce dissolved organic carbon in Zoige peatland. Journal of Environmental Management, 324, 116376. https://doi.org/10.1016/j.jenvman.2022.116376
  • 25. Manzoor E., Majeed Z., Nawazish S., Akhtar W., Baig S., Baig A., Fatima Bukhari S.M., Mahmood Q., Mir Z., Shaheen S. 2022. Wood ash additive for performance improvement of gelatin-based slow release urea fertilizer. Agriculture, Vol. 12.
  • 26. Mathapati M., Amate K., Durga Prasad C., Jayavardhana M.L., Hemanth Raju T. 2022. A review on fly ash utilization. Materials Today: Proceedings, 50, 1535-1540. https://doi.org/10.1016/j.matpr.2021.09.106
  • 27. McKinzie W.E. 1974. Criteria used in soil taxonomy to classify organic soils. In: AAndahl, A.R. and Boul, S.W. and Hill, d. and Bailey, H.H. (eds.) Histosols: Their Characteristics, Classification, and Use. Soil Science Society of America. Madison, WI., pp 1-10.
  • 28. McLean E.O. 1982. Soil pH and lime requirement. In: Page, A.L. and Keeney, D.R. (eds.) Methods of Soil Analysis Part 2: Chemical and Biological Properties. Soil Science Society of America. Madison WI., pp 199-224.
  • 29. Miao S., Ye R., Qiao Y., Zhu-Barker X., Doane T.A., Horwath W.R. 2017. The solubility of carbon inputs affects the priming of soil organic matter. Plant and Soil, 4101, 129-138. https://doi.org/10.1007/s11104-016-2991-1
  • 30. Mishra S., Page S.E., Cobb A.R., Lee J.S.H., Jovani-Sancho A.J., Sjögersten S., Jaya A., Aswandi, Wardle D.A. 2021. Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. Journal of Applied Ecology, 587, 1370-1387. https://doi.org/10.1111/1365-2664.13905
  • 31. Moore T.R., Bubier J.L. 2020. Plant and soil nitrogen in an ombrotrophic peatland, southern Canada. Ecosystems, 231, 98-110. https://doi.org/10.1007/s10021-019-00390-w
  • 32. Nelson D.W., Sommers L.E. 1996. Total carbon, organic carbon and organic matter. In: Sparks, D.L. (ed.) Methods of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America-American Society of Agronomy Inc. Madison WI., pp 961-1011.
  • 33. Normand A.E., Turner B.L., Lamit L.J., Smith A.N., Baiser B., Clark M.W., Hazlett C., Kane E.S., Lilleskov E., Long J.R., Grover S.P., Reddy K.R. 2021. Organic matter chemistry drives carbon dioxide production of peatlands. Geophysical Research Letters, 4818, e2021GL093392. https://doi.org/10.1029/2021GL093392
  • 34. Olsen S.R., Sommers L.E. 1982. Phosphorus. In: Page, A.L. and Miller, R.H. and Keeney, D.R. (eds.) Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc., and Soil Science Society of America, Inc. Madison, Wisconsin USA, pp 403-430.
  • 35. Olson R.V., Ellis R. 1982. Iron. In: Page, A.L. and Miller, R.H. and Keeney, D.R. (eds.) Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc., Soil Science Society of America, Inc. Madison, Wisconsin USA, pp 301-312.
  • 36. Osaki M., Kato T., Kohyama T., Takahashi H., Haraguchi A., Yabe K., Tsuji N., Shiodera S., Rahajoe J.S., Atikah T.D., Oide A., Matsui K., Wetadewi R.I., Silsigia S. 2021. Basic Information About Tropical Peatland Ecosystems. In: Osaki, M. and Tsuji, N. and Foead, N. and Rieley, J. (eds.) Tropical Peatland Ecomanagement. Springer Singapore. Singapore, 3-62.
  • 37. Page S., Mishra S., Agus F., Anshari G., Dargie G., Evers S., Jauhiainen J., Jaya A., Jovani-Sancho A.J., Laurén A., Sjögersten S., Suspense I.A., Wijedasa L.S., Evans C.D. 2022. Anthropogenic impacts on lowland tropical peatland biogeochemistry. Nature Reviews Earth & Environment, 37, 426-443. https://doi.org/10.1038/s43017-022-00289-6
  • 38. Parab N., Sinha S., Mishra S. 2015. Coal fly ash amendment in acidic field: Effect on soil microbial activity and onion yield. Applied Soil Ecology, 96, 211-216. https://doi.org/10.1016/j.apsoil.2015.08.007
  • 39. Parent L.E., Caron J. 1993. Physical Properties of Organic Soils. In: Carter, M.R. (ed.) Soil Sampling and Methods of Analysis. Lewis Publishers. Boca Raton, pp 441-458.
  • 40. Payne R. 2008. A Guide to Anova and Design in Genstat. VSN International, Hempstead, UK.
  • 41. Preston M.D., Basiliko N. 2016. Carbon mineralization in peatlands: Does the soil microbial community composition matter? Geomicrobiology Journal, 332, 151-162. https://doi.org/10.1080/01490451.2014.999293
  • 42. Priatmadi J.B., Septiana M., Saidy R.A. 2023. Growth performance and yield of rice grown in three different types of soil collected from rice fields with coal fly ash application. Plant, Soil and Environment, 697, 314-323. DOI: 10.17221/245/2022-PSE
  • 43. Rakhsh F., Golchin A., Beheshti Al Agha A., Alamdari P. 2017. Effects of exchangeable cations, mineralogy and clay content on the mineralization of plant residue carbon. Geoderma, 307, 150-158. https://doi.org/10.1016/j.geoderma.2017.07.010
  • 44. Rhoades J.D. 1982. Cation exchange capacity. In: Page, A.L. and Miller, R.H. and Keeney, D.R. (eds.) Methods of Soil Analysis Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc., Soil Science Society of America, Inc. Wisconsin, pp 149-158.
  • 45. Rodríguez-Salgado I., Pérez-Rodríguez P., Santás V., Nóvoa-Muñoz J.C., Arias-Estévez M., Díaz-Raviña M., Fernández-Calviño D. 2017. Carbon mineralization in acidic soils amended with an organo-mineral bentonite waste. Journal of soil science and plant nutrition, 173, 624-634. http://dx.doi.org/10.4067/S0718-95162017000300006
  • 46. Rowley M.C., Grand S., Verrecchia É.P. 2018. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry, 1371, 27-49. https://doi.org/10.1007/s10533-017-0410-1
  • 47. Saidy A.R., Hayati A., Septiana M. 2020. Different effects of ash application on the carbon mineralization and microbial biomass carbon of reclaimed mining soils. Journal of Soil Science and Plant Nutrition, 10, 1001-1012. https://doi.org/10.1007/s42729-020-00187-0
  • 48. Saidy A.R., Priatmadi B.J., Septiana M. 2022. Reduction in carbon dioxide and methane production of tropical peatlands due to coal fly-ash application. IOP Conference Series: Earth and Environmental Science, 9761, 012022.10.1088/1755-1315/976/1/012022
  • 49. Shakeel A., Khan A.A., Alharby H.F., Bamagoos A.A., Tombuloglu H., Hakeem K.R. 2021. Evaluation of coal fly ash for modulating the plant growth, yield, and antioxidant properties of Daucus carota (L.): A sustainable approach to coal waste recycling. Sustainability, 139. https://doi.org/10.3390/su13095116
  • 50. Singh D., Tripathi D.M., Tripathi S. 2022. A Review on Fly Ash as a Potential Source of Soil Amendment in Agriculture. Advances in Microbiology, 102.
  • 51. Singh J.S., Pandey V.C., Singh D.P. 2011. Coal fly ash and farmyard manure amendments in dry-land paddy agriculture field: Effect on N-dynamics and paddy productivity. Applied Soil Ecology, 472, 133-140. https://doi.org/10.1016/j.apsoil.2010.11.011
  • 52. Singh M., Sarkar B., Sarkar S., Churchman J., Bolan N., Mandal S., Menon M., Purakayastha T.J., Beerling D.J. 2018. Chapter Two - Stabilization of Soil Organic Carbon as Influenced by Clay Mineralogy. In: Sparks, D.L. (ed.) Advances in Agronomy. Academic Press, pp 33-84.
  • 53. Solly E.F., Weber V., Zimmermann S., Walthert L., Hagedorn F., Schmidt M.W.I. 2020. A critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in Swiss forest soils. Frontiers in Forests and Global Change, 3. https://doi.org/10.3389/ffgc.2020.00098
  • 54. Song Y., Cheng X., Song C., Li M., Gao S., Liu Z., Gao J., Wang X. 2022. Soil CO2 and N2O emissions and microbial abundances altered by temperature rise and nitrogen addition in active-layer soils of permafrost peatland. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1093487
  • 55. Song Y., Song C., Meng H., Swarzenski C.M., Wang X., Tan W. 2017. Nitrogen additions affect litter quality and soil biochemical properties in a peatland of Northeast China. Ecological Engineering, 100, 175-185. https://doi.org/10.1016/j.ecoleng.2016.12.025
  • 56. Song Y., Song C., Tao B., Wang J., Zhu X., Wang X. 2014. Short-term responses of soil enzyme activities and carbon mineralization to added nitrogen and litter in a freshwater marsh of Northeast China. European Journal of Soil Biology, 61, 72-79. https://doi.org/10.1016/j.ejsobi.2014.02.001
  • 57. Soong J.L., Parton W.J., Calderon F., Campbell E.E., Cotrufo M.F. 2015. A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry, 1241, 27-44. https://doi.org/10.1007/s10533-015-0079-2
  • 58. Sowers T.D., Stuckey J.W., Sparks D.L. 2018. The synergistic effect of calcium on organic carbon sequestration to ferrihydrite. Geochemical Transactions, 191, 4. https://doi.org/10.1186/s12932-018-0049-4
  • 59. Tsadilas C.D., Hu Z., Bi Y., Nikoli T. 2018. Utilization of coal fly ash and municipal sewage sludge in agriculture and for reconstruction of soils in disturbed lands: results of case studies from Greece and China. International Journal of Coal Science & Technology, 51, 64-69. https://doi.org/10.1007/s40789-018-0202-9
  • 60. Varshney A., Mohan S., Dahiya P. 2020. Composition and Dynamics of Microbial Communities in Fly Ash-Amended Soil. In: Varma, A. and Tripathi, S. and Prasad, R. (eds.) Plant Microbiome Paradigm. Springer International Publishing. Cham, 231-246.
  • 61. Wang H., Hu G., Xu W., Boutton T.W., Zhuge Y., Bai E. 2018. Effects of nitrogen addition on soil organic carbon mineralization after maize stalk addition. European Journal of Soil Biology, 89, 33-38. https://doi.org/10.1016/j.ejsobi.2018.10.002
  • 62. Warren M., Frolking S., Dai Z., Kurnianto S. 2017. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation. Mitigation and Adaptation Strategies for Global Change, 227, 1041-1061. https://doi.org/10.1007/s11027-016-9712-1
  • 63. Woch M.W., Radwańska M., Stanek M., Łopata B., Stefanowicz A.M. 2018. Relationships between waste physicochemical properties, microbial activity and vegetation at coal ash and sludge disposal sites. Science of The Total Environment, 642, 264-275. https://doi.org/10.1016/j.scitotenv.2018.06.038
  • 64. Xiao D., Huang Y., Feng S., Ge Y., Zhang W., He X., Wang K. 2018. Soil organic carbon mineralization with fresh organic substrate and inorganic carbon additions in a red soil is controlled by fungal diversity along a pH gradient. Geoderma, 321, 79-89. https://doi.org/10.1016/j.geoderma.2018.02.003
  • 65. Yadav V.K., Pandita P.R. 2019. Fly ash properties and their applications as a soil ameliorant. In: Rathoure, A.K. (ed.) Amelioration Technology for Soil Sustainability. IGI Global, pp 59-89.
  • 66. Zhang L., Liu X., Duddleston K., Hines M.E. 2020. The effects of pH, temperature, and humic-like substances on anaerobic carbon degradation and methanogenesis in ombrotrophic and minerotrophic Alaskan peatlands. Aquatic Geochemistry, 263, 221-244. https://doi.org/10.1007/s10498-020-09372-0
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e57fb2ec-8777-4a4d-800e-bc3b6eb10a67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.