Warianty tytułu
Języki publikacji
Abstrakty
In this study, the beneficiation performance of chrome from the high carbon ferrochrome slag (HCFS) was evaluated. The mineralogical characteristics of HCFS was investigated first, and then HCFS was treated by magnetic separation, gravity separation, magnetic-gravity combined separation, and gravity separation after grinding respectively, to recover the Cr2O3. Finally, the Fuerstenau upgrading curves were used to evaluate the separation performance of different separation processes. The results indicated that the gravity separation process with a proper grinding condition gave the optimum beneficiation performance. A concentrate product with 30.18% Cr2O3 grade and 22.52% recovery was obtained from the HCFS.
Rocznik
Tom
Strony
460--470
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wz.
Twórcy
autor
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Alberta, Canada
autor
- Baogang Mining Research Institute, Baotou, 014010, Inner Mongolia, China
autor
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
autor
- Baogang Mining Research Institute, Baotou, 014010, Inner Mongolia, China
autor
- Baogang Mining Research Institute, Baotou, 014010, Inner Mongolia, China
autor
- Mining and Minerals Engineering Department, Virginia Tech, Blacksburg, Virginia 24060 US
autor
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China, xiangning.bu@cumt.edu.cn
autor
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China , shaohuaizhicumt@outlook.com
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China
Bibliografia
- BAI, Z.T., ZHANG, Z.A., GUO, M., HOU, X.M., ZHANG, M., 2015. Magnetic separation and extraction chrome fro high carbon ferrochrome slag. Mater. Res. Innov. 19, S2-113-S2-118.
- BERGMANN, C., GOVENDER, V., CORFIELD, A.A., 2016. Using mineralogical characterisation and process modeling to simulate the gravity recovery of ferrochrome fines. Miner. Eng. 91, 2–15.
- BO, B.L., FALLMAN, A.M., LARSSON, L.B., 2001. Environmental impact of ferrochrome slag in road construction. Waste Manag. 21, 255–264.
- BU, X., ZHANG, T., CHEN, Y., PENG, Y., XIE, G., WU, E., 2018. Comparison of mechanical flotation cell and cyclonic microbubble flotation column in terms of separation performance for fine graphite. Physicochem. Probl. Miner. Process.
- CHEN,G.,WANG,X.,DU,H.,ZHANG,YING,WANG,J.,ZHENG, S.,ZHANG,YI, 2014. A clean and efficient leaching process for chromite ore. Miner. Eng. 60, 60–68.
- DAAVITTILA, J., HONKANIEMI, M., JOKINEN, P., 2004. The transformation of ferrochromium smelting technologies during the last decades. J. South African Inst. Min. Metall. 104.
- DEAKIN, D., WEST, L.J., STEWART, D.I., YARDLEY, B.W.D., 2001. Leaching behaviour of a chromium smelter waste heap. Waste Manag. 21, 265–270.
- DHAL, B., THATOI, H.N., DAS, N.N., PANDEY, B.D., 2013. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 250–251, 272–291.
- DRZYMALA, J., 2005. Evaluation and comparison of separation performance for varying feed composition and scattered separation results. Int. J. Miner. Process. 75, 189–196.
- DRZYMALA, J., AHMEND, H.A.M., 2005. Mathematical equations for approximation of separation results using the Fuerstenau upgrading curves. Int. J. Miner. Process. 76, 55–65.
- DRZYMALA, J., KOWALCZUK, P.B., OTENG-PEPRAH, M., FOSZCZ, D., MUSZER, A., HENC, T., LUSZCZKIEWICZ, A., 2013. Application of the grade-recovery curve in the batch flotation of Polish copper ore ☆. Miner. Eng. 49, 17–23.
- DRZYMALA, J., LUSZCZKIEWICZ, A., FOSZCZ, D., 2010. Application of Upgrading Curves for Evaluation of Past, Present, and Future Performance of a Separation Plant. Miner. Process. Extr. Metall. Rev. 31, 165–175.
- HESSE,M.,POPOV, O.,LIEDERWIRTH , H., 2017. Increasing efficiency by selective comminution. Miner. Eng. 103, 112–126.
- JEREMIAH, J., LAURA, S., GRAEDEL, T.E., 2006. The contemporary anthropogenic chromium cycle. Environ. Sci. Technol. 40, 7060–7069.
- JIA, R., HARRIS, G.H., FUERSTENAU, D.W., 2002. Chemical Reagents for Enhanced Coal Flotation. Coal Prep. 22, 123–149.
- JOGLEKAR, A.M., MAY, A.T., 1987. Product excellence through design of experiments. Cereal foods world 32, 857.
- KIM, E., SPOOREN, J., BROOS, K., NIELSEN, P., HORCKMANS, L., VRANCKEN, K.C., QUAGHEBEUR, M., 2016. New method for selective Cr recovery from stainless steel slag by NaOCl assisted alkaline leaching and consecutive BaCrO4 precipitation. Chem. Eng. J. 295, 542–551.
- KOLELI, N., DEMIR, A., 2016. Chromite, in: Prasad, M.N. V, Shih, K.B.T.-E.M. and W. (Eds.), Environmental Materials and Waste: Resource Recovery and Pollution Prevention. Academic Press, pp. 245–263.
- MASHANYARE , H.P., GUEST, R.N., 1997. The recovery of ferrochrome from slag at Zimasco. Miner. Eng. 10, 1253–1258.
- NAPIER-MUNN, T., WILLS, B.A., 2005. Wills’ Mineral Processing Technology. Wills’ Miner. Process. Technol. https://doi.org/10.1016/B978-0-7506-4450-1.X5000-0
- PANDA, C.R., MISHRA, K.K., NAYAK, B.D., RAO, D.S., NAYAK, B.B., 2012. Release behaviour of chromium from ferrochrome slag. Int. J. Environ. Technol. Manag. 15, 261–274.
- PARISER, H.H., BACKEBERG, N.R., MASSON, O.C.M., BEDDER, J.C.M., 2018. Changing nickel and chromium stainless steel markets - a review. J. South. African Inst. Min. Metall.
- SAHU, N., BISWAS, A., KAPURE, G.U., 2016. A Short Review on Utilization of Ferrochromium Slag. Miner. Process. Extr. Metall. Rev. 37, 211–219.
- SPOOREN, J.,KIM, E., HORCKMANS, L., BROOS, K., NIELSEN, P., QUAGHEBEUR, M., 2016. In-situ chromium and vanadium recovery of landfilled ferrochromium and stainless steel slags. Chem. Eng. J. 303, 359–368.
- TONG, L., KLEIN, B., ZANIN, M., QUAST, K., SKINNER, W., ADDAI-MENSAH, J., ROBINSON, D., 2013. Stirred milling kinetics of siliceous goethitic nickel laterite for selective comminution. Miner. Eng. 49, 109–115.
- VAN STADEN, Y., BEUKES, J.P., VAN ZYL, P.G., DU TOIT, J.S., DAWSON, N.F., 2014. Characterisation and liberation of chromium from fine ferrochrome waste materials. Miner. Eng. 56, 112–120.
- XING,Y.,GUI,X., CAO,Y.,WANG,Y.,XU,M.,WANG,D.,LI, C., 2017. Effect of compound collector and blending frother on froth stability and flotation performance of oxidized coal. Powder Technol. 305, 166–173.
- XUE, K., HAN, J., JIAO, F., LIU, W., QIN, W., CAI, L., XU, T., 2018. Comprehensive utilization of spent magnesia-chrome refractories with gravity separation followed by flotation. Miner. Eng. 127, 125–133.
- YANG, Y., ZENG, L., DENG, F., HU, J., 2018. Geological characteristics and mineralization potential of chromite resources in China. Earth Sci. Front. 25, 138-147 (in Chinese).
- ZHANG, T., PENG, G., GAO, P., WEI, J., YU, Q., 2013. Effectiveness of novel and traditional methods to incorporate industrial wastes in cementitious materials—An overview. Resour. Conserv. Recycl. 74, 134–143.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e5636d50-a1c0-40bd-ba9f-3ef82aec4c3d