Warianty tytułu
Języki publikacji
Abstrakty
In order to further understand the detonation characteristics of annular booster pellets, the energy convergence effect from the detonation wave on the central axis was investigated by using the segmentation and lower end surface output. The result shows that in the whole explosion process, the power exportation capability (N) of the converging energy flow into the central axis increases, then decreases, and then increases and finally decreases. When the collision incidence angle of the detonation waves (or shock waves) reaches a critical value (φcr), Mach reflection occurs at the position on the central axis from the upper end face, as expressed by the formula hc = Lg·tanφcr at time t. The pressure at the collision point rises abruptly to the maximum pressure with a maximum of the power capacity. The segmentation and lower end face output opens up a new test method for the optimal design of the special-shaped booster explosive.
Rocznik
Tom
Strony
302-317
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- Department of Environmental and Safety Engineering, Taiyan Institute of Technology, Tai Yuan, China, xzq2701@163.com
autor
- Department of Computer Science, Wuhan Polytechnic, Wuhan, China
autor
- Chemical Industry and Ecology College, North University of China, Taiyuan, China
autor
- Ordnance Engineering College, Naval University of Engineering, Wuhan, China
Bibliografia
- [1] Xiang, D.-L.; Rong, J.-L.; Li, J.; Feng, X.-J.; Wang, H. Effect of Al/O Ratio on Detonation Performance and Underwater Explosion of RDX-based Aluminized Explosive. (in Chinese) Acta Armamentarii 2013, 34(1): 45-50; https://doi.org/10.3969/j.issn.1000-1093.2013.01.009.
- [2] Davis, J.J.; Miller, P.J. Effect of Metal Particle Size on Blast Performance of RDX-based Explosives. AIP Conf. Proc. 2002, 620: 950-953; https://doi.org/10.1063/1.1483695.
- [3] Woody, D.; Davis, J.J. The Effect of Variation of Aluminum Particle Size and Polymer on the Performance of Explosives. AIP Conf. Proc. 2002, 620: 942-945; https://doi.org/10.1063/1.1483693.
- [4] Tanguay, V.; Goroshin, S.; Higgins, A.J.; Zhang, F. Aluminum Particle Combustion in High-Speed Detonation Products. Combust. Sci. Technol. 2009, 181(4): 670-693; https://doi.org/10.1080/00102200802643430.
- [5] Young, G.; Sullivan, K.; Zachariah, M.R.; Yu, K. Combustion Characteristics of Boron Nanoparticles. Combust. Flame 2009, 156(2): 322-333; https://doi.org/10.1016/j.combustflame.2008.10.007.
- [6] Sullivan, K.; Young, G.; Zachariah, M.R. Enhanced Reactivity of nano-B/Al/CuO MIC’s. Combust. Flame 2009, 156(2): 302-309; https://doi.org/10.1016/j.combustflame.2008.09.011.
- [7] Komarov, V.F.; Sakovich, G.V.; Vorozhtsov, A.B.; Vakutin, A.G.; Komarova, M.V. The Function of Nanometals in Enhancing the Explosion Performance of Composite Explosives. Proc. 40<sup>th</sup> Int. Annu. Conf. ICT, Karlsruhe, Germany, 2009, P108/1-8.
- [8] Han, Y.; Huang, H.; Huang, Y.M. Power of Aluminized Explosives with Different Diameters. (in Chinese) Chin. J. Explos. Propellants 2008, 31(6): 5-7.
- [9] Makhov, M. Explosion Heat of Boron-Containing Explosive Compositions. Proc. 35<sup>th</sup> Int. Annu. Conf. ICT, Karlsruhe, Germany, 1999, P55.
- [10] Flower, P.Q.; Steward, P.A.; Bates, L.R.; Shakesheff, A.J.; Reip, P.W. Improving the Efficiency of Metallised Explosives. Proc. Insensitive Munitions and Energetic Materials Technical Symp., Bristol, UK, 2006.
- [11] Wang, C.L.; Zhao, S.X.; Jia, M. Calculation of Detonation Products for Non-ideal Explosive with AP. (in Chinese) Chin. J. Explos. Propellants 2014, 22(2): 235-239.
- [12] Hu, L.S.; Hu, S.Q.; Cao, X. Study on the Initiation Capacities of Two Booster Pellets. Cent. Eur. J. Energ. Mater. 2012, 9(3): 261-272.
- [13] Francois, G.E.; Harry, H.H.; Hartline, L.E.; Hooks, D.E.; Johnson, C.E.; Morris, J.S.; Novak, A.M.; Ramos, K.J.; Sanders, V.E.; Scovel, C.A.; Lorenz, T.; Wright, M.; Botcher, T.; Marx, E.; Gibson, K. Summary of Booster Development and Qualification Report. LANL, Report No. LA-UR-12-22394, US, 2012.
- [14] Kong, Q.-Q.; Xu, B.-Y.; Zhong, K.; Lu, Y.-Z. Simulation on the Dynamic Response of Main Charge around the Booster Charge Structure in Penetrating Projectile. (in Chinese) Initiators Pyrotech. 2012, 1: 1-3.
- [15] Hu, S.Q.; Cao, X. A Study on the Structure of Booster Pellets Having High Initiating Capacity. (in Chinese) Acta Armamentarii 2002, 23(2): 188-190.
- [16] Cao, X.; Liu, Y.; Hu, S.Q.; Zhang, S.-Z. Numerical Simulation and Power Test on the Annular Booster Initiated by Multi-point Explosive Circuit. Initiators Pyrotech. 2005, 5: 16-18+38.
- [17] Hu, S.Q.; Liu, H.R.; Hu, L.S.; Cao, X.; Mi, X.-C.; Zhao, H.-X. Study on the Structures of Two Booster Pellets Having High Initiation Capacity. J. Energ. Mater. 2014, 32(sup1): S3-S12; https://doi.org/10.1080/07370652.2013.812161.
- [18] Li, W.X. One-dimensional Unsteady Flows and Shock Waves. National Defence Industry Press, Beijing, China, 2003.
- [19] Baker, E.L. An Explosives Products Thermodynamic Equation of State Appropriate for Material Acceleration and Overdriven Detonation: Theoretical Background and Formulation. U.S. Army Armament Research, Development and Engineering Center, Technical Report ARAED-TR-91013, NJ, 1991.
- [20] Fritz, J.N.; Hixson, R.S.; Shaw, M.S.; Morris, C.E.; McQueen, R.G. Overdrivendetonation and Sound-speed Measurements in PBX-9501 and the Thermodynamic Chapman-Jouguet Pressure. J. Appl. Phys. 1996, 80(11): 6129-6141; https://doi.org/10.1063/1.363681.
- [21] Zhang, S.Z. Explosion and Impact Dynamics. Weapons Industry Press, Beijing, 1993, pp. 69-83.
- [22] Zhang, B.P.; Zhang, Q.M.; Huang, F.L. Detonation Physics. Beijing: Weapons Industry Press, China, 2009, pp. 51-85
- [23] Liu, Z.Y. Overdriven Detonation Phenomenon and Its Application to Ultra-high Pressure Generation. Kumamoto University, Japan, 2001.
- [24] Huang, Y.S. Explosive Theory. Weapons Industry Press, Beijing, 2009, pp. 202-205.
- [25] Xie, Z.B.; Hu, S.Q.; Hu, L.S.; Sun, B.F. Optimal Design of Annular Booster Pellet. (in Chinese) J. North Univ. China, Nat. Sci. Ed. 2016, 37(2): 177-180+186.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e5628af1-9310-4bcd-b1c7-5e0a1862ab29