Warianty tytułu
Języki publikacji
Abstrakty
Shallots are essential vegetables in horticulture, but there is insufficient information available on the effects of drought stress on different growth stages and the inoculation of plant growth-promoting rhizobacteria (PGPR) on their photosynthetic characteristics. This study aims to investigate the effects of drought stress at different growth stages (vegetative growth phase, bulb initiation phase, bulb development phase, and maturation phase) and PGPR inoculation (Pseudomonas Pb04 and Bacillus Pb03) to mitigate the negative impact of drought stress on photosynthetic characteristics, chlorophyll content, and shallot yield. The results showed that the optimal photosynthesis rate, chlorophyll content, and yield of shallots were most tolerant when the plants experienced drought stress in the maturation phase compared to other growth phases. During the maturation phase, the reduction in photosynthesis rate at PPFD 900 µmol·m-2s-1 is only 19.1% compared to plants without drought stress. Drought stress during the bulb growth phase takes the longest to recover conditions after stress, leading to inhibited growth when stress occurs during this phase. In the bulb growth phase, the decrease in photosynthesis rate is 34.8% compared to the treatment without drought stress. PGPR can mitigate the sensitivity of plants to drought stress. Pseudomonas Pb04 predominantly suppresses the impact of drought stress during the vegetative growth phase, while Bacillus Pb03 has a more dominant effect on drought stress occurring during bulb initiation, bulb development, and maturation phases.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
230--243
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
- Sustainable Agricultural Extension Department, Agricultural Development Polytechnic of Malang, Jl. Dr. Cipto Bedali, Lawang 65216, East Java, Indonesia, arumpratiwi@polbangtanmalang.ac.id
- Department of Agronomy, Faculty of Agriculture, Universitas Brawijaya, Jl. Veteran, Malang 65145, East Java, Indonesia, mdm-fp@ub.ac.id
autor
- Department of Agronomy, Faculty of Agriculture, Universitas Brawijaya, Jl. Veteran, Malang 65145, East Java, Indonesia, eko.widar@ub.ac.id
autor
- Department of Agronomy, Faculty of Agriculture, Universitas Brawijaya, Jl. Veteran, Malang 65145, East Java, Indonesia, nra-fp@ub.ac.id
Bibliografia
- 1. Azeem, M., Haider, M.Z., Javed, S., Saleem, M.H., Alatawi, A. 2022. Drought Stress Amelioration in Maize (Zea mays L.) by Inoculation of Bacillus spp. Strains under Sterile Soil Conditions. Agriculture, 12, 50. https://doi.org/10.3390/agriculture12010050
- 2. Bencze S., Bamberger Z., Janda T. 2014. Physiological response of wheat varieties to elevated atmospheric CO2 and low water supply levels. Photosynthetica, 52, 71–82. https://doi.org/10.1007/s11099-014-0008-y
- 3. Calzadilla P.I., Carvalho F.E.L., Gomez R., Neto M.C.L., Signorelli S. 2022. Assessing photosynthesis in plant systems: A cornerstone to aid in the selection of resistant and productive crops. Environmental and Experimental Botany, 201, 104950. https://doi.org/10.1016/j.envexpbot.2022.104950
- 4. Chauhan, Jyoti, Prathibha M.D., Prabha S., Prince C., Udit N.M., Debanjana S., Rajeev K. 2023. Plant photosynthesis under abiotic stresses: Damages, adaptive, and signaling mechanisms. Plant Stress, 10, 100296. https://doi.org/10.1016/j.stress.2023.100296
- 5. Czarnocka W., Karpiński S. 2018. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radical Biology and Medicine, 122, 4–20. https://doi.org/10.1016/j.freeradbiomed.2018.01.011
- 6. Fonseca M.C.D., Bossolani J.W., de Oliveira S.L., Moretti L.G., Portugal J.R., Scudeletti D., de Oliveira E.F., Crusciol C.A.C. 2022. Bacillus subtilis Inoculation Improves Nutrient Uptake and Physiological Activity in Sugarcane under Drought Stress. Microorganisms, 13, 10(4), 809. https://doi.org/10.3390/microorganisms10040809
- 7. Hassan E., Maheshwari K.D. 2018. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 156, 225246. https://doi.org/10.1016/j.ecoenv.2018.03.013
- 8. Kaushal M., Wani S.P. 2016. Rhizobacterial-plant interactions: Strategies ensuring plant growth promotion under drought and salinity stress. Agriculture, Ecosystems and Environment, 231, 68–78. https://doi.org/10.1016/j.agee.2016.06.031
- 9. Khatoon, Zobia, Suiliang H., Mazhar R., Ali F., Muhammad A.K., Gustavo S. 2020. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management, 273, 111118. https://doi.org/10.1016/j.jenvman.2020.111118
- 10. Kumar, Santosh, Jun C., Ameer, A.K., Wangbiao, G., Yanmei, S., Shuzheng, L., Shutong, C., Jianglei, T. 2021. Orange light spectra filtered through transparent colored polyvinyl chloride sheet enhanced pigment content and growth of Arthrospira cells. Bioresource Technology, 319, 124179. https://doi.org/10.1016/j.biortech.2020.124179
- 11. Li G., Chen T., Feng B., Peng S., Tao L., Fu G. 2021. Respiration, Rather Than Photosynthesis, Determines Rice Yield Loss Under Moderate HighTemperature Conditions. Front Plant Sci, 24(12), 678653. https://doi.org/10.3389/fpls.2021.678653
- 12. Mandal, Riddhipratim, Gorachand D. 2020. From photosynthesis to biosensing: Chlorophyll proves to be a versatile molecule. Sensors International, 1, 100058. https://doi.org/10.1016/j.sintl.2020.100058
- 13. Mehravi, Shaghayegh, Mehrdad H., Amir G., Mostafa K. 2023. Water deficit stress changes in physiological, biochemical and antioxidant characteristics of anise (Pimpinella anisum L.). Plant Physiology and Biochemistry, 201, 107806. https://doi.org/10.1016/j.plaphy.2023.107806
- 14. Pereira S.I.A., Abreu D., Moreira H., Vega A., Castro P.M.L. 2020. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 6(10), e05106. https://doi.org/10.1016/j.heliyon.2020.e05106
- 15. Pugh, T.A.M., Müller, A.C., Arneth, V., Haverd, Smith B. 2016. Key knowledge and data gaps in modelling the influence of CO2 concentration on the terrestrial carbon sink. Journal of Plant Physiology, 203, 3–15. https://doi.org/10.1016/j.jplph.2016.05.001
- 16. Rogowski, P., Wasilewska-Dębowska, W., Krupnik T., Drożak A., Zienkiewicz, M., Małgorzata, K., Romanowska, E. 2019. Photosynthesis and organization of maize mesophyll and bundle sheath thylakoids of plants grown in various light intensities. Environmental and Experimental Botany, 162, 72–86. https://doi.org/10.1016/j.envexpbot.2019.02.006
- 17. Ruan, Cunxin, Haibo H., Can, Pei, Xichuan, Zhaoming, Li. 2022. Photosynthetic Processes and Light Response Model Fitting of Quercus acutissima Carruth. and Quercus variabilis Bl. in the Changjiang River Delta, China. Forests, 201, 104950. https://doi.org/10.3390/f13122010
- 18. Rukmangada M.S., Sumathy R., Sivaprasad V., Girish N.V. 2018. Growth performance in contrasting sets of mulberry (Morus Spp.) genotypes explained by logistic and linear regression models using morphological and gas exchange parameters. Scientia Horticulturae, 235, 53–61. https://doi.org/10.1016/j.scienta.2017.12.040
- 19. Sales C.R.G., Rafael V., Ribeiro, Paulo E.R., Marchiori, Johannes K., Eduardo C.M. 2023. The negative impact of shade on photosynthetic efficiency in sugarcane may reflect a metabolic bottleneck. Environmental and Experimental Botany, 211, 105351. https://doi.org/10.1016/j.envexpbot.2023.105351
- 20. Sánchez V.A., Gómez D.S. 2019. Inter-cultivar variability in the functional and biomass response of garlic (Allium sativum L.) to water availability. Scientia Horticulturae, 252, 243–251. https://doi.org/10.1016/j.scienta.2019.03.043
- 21. Sánchez V.A., Léllis B.C, Pardo J.J, Martínez R.A., Gómez D.S., Domínguez A. 2020. Functional response of garlic to optimized regulated deficit irrigation (ORDI) across crop stages and years: Is physiological performance impaired at the most sensitive stages to water deficit. Agricultural Water Management, 228, 105886. https://doi.org/10.1016/j.agwat.2019.105886
- 22. Schuwirth N., Florian B., Sami D., Martin F., Mira K., David K., Mathias K., Simone D,. Langhans, Javier M.L., Peter V. 2019. How to make ecological models useful for environmental management. Ecological Modelling, 411, 108784. https://doi.org/10.1016/j.ecolmodel.2019.108784
- 23. Seleiman M.F., Al-Suhaibani N., Ali N., Akmal M., Alotaibi M., Refay Y., Dindaroglu T., Abdul-Wajid H.H., Battaglia M.L. 2021. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plant, 10(2), 259. https://doi.org/10.3390/plants10020259
- 24. Sharon B.G., Siobhan M., Brady. 2016. Plant developmental responses to climate change. Developmental Biology, 419(1), 64–77. https://doi.org/10.1016/j.ydbio.2016.07.023
- 25. Singh, Amit K., Harvesh K.R., Abhay K. Pandey. 2020. Chapter 19 - Analysis of chlorophylls,. Recent Advances in Natural Products Analysis (Elsevier), 635–650. https://doi.org/10.1016/ B978-0-12-816455-6.00019-6
- 26. Smith H. C.J., Benitez A. 2013. Chlorophylls: Analysis in Plant Materials. Modern Methods of Plant Analysis / Moderne Methoden der Pflanzenanalyse. Springer Science & Business Media.
- 27. Sun Hu, Qi Shi, Ning-Yu L., Shi-Bao Z., Wei H. 2023. Drought stress delays photosynthetic induction and accelerates photoinhibition under shortterm fluctuating light in tomato. Plant Physiology and Biochemistry, 196, 152–161. https://doi.org/10.1016/j.plaphy.2023.01.044
- 28. Tang, Chan-juan, Ming-zhao L., Shuo Z., Guan-qing J., Sha T., Yan-chao J., Hui Z., Xian-min D. 2023. Variations in chlorophyll content, stomatal conductance, and photosynthesis in Setaria EMS mutants. Journal of Integrative Agriculture, 22(6), 16181630. https://doi.org/10.1016/j.jia.2022.10.014
- 29. Uzma M., Iqbal A., Hasnain S. 2022. Drought tolerance induction and growth promotion by indole acetic acid producing Pseudomonas aeruginosa in Vigna radiata. PLoS ONE, 17(2), e0262932. https://doi.org/10.1371/journal.pone.0262932
- 30. Vialet S.C., Matthews J.S., Simkin A.J., Raines C.A., Lawson T. 2017. Importance of Fluctuations in Light on Plant Photosynthetic Acclimation. Plant Physiol, 173(4), 2163–2179. https://doi. org/10.1104/pp.16.01767
- 31. Vurukonda S.S., Krishna P., Sandhya V., Manjari S., Ali S.Z. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13-24. https://doi.org/10.1016/j.micres.2015.12.003
- 32. Wang M., Jennifer A.J. Dungait, Xiaomeng W., Tida G., Ruixing H., Zhu O., Fusuo Z., Jing T. 2022. Long-term warming increased microbial carbon use efficiency and turnover rate under conservation tillage system. Soil Biology and Biochemistry, 172, 108770. https://doi.org/10.1016/j.soilbio.2022.108770
- 33. Wang, Qian, Kazunari D. 2019. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. American Chemical Society, 120(2), 919–985. https://doi.org/10.1021/acs.chemrev.9b00201
- 34. Yagoubi A., Yathreb M., Stefanos G., Touhami R., Wahbi D., and Rakia C. 2023. The silver lining of antibiotic resistance: Bacterial-mediated reduction of tetracycline plant stress via antibiotrophy. Plant Physiology and Biochemistry, 204, 108093. https://doi.org/10.1016/j.plaphy.2023.108093
- 35. Yufeng X., Chen S., Zhao S., Song J., Sun J., Cui N., Chen X., Qu B. 2024. Effects of light intensity on the photosynthetic characteristics of Hosta genotypes differing in the glaucousness of leaf surface. Scientia Horticulturae, 327, 112834. https://doi.org/10.1016/j.scienta.2023.112834
- 36. Zarei T., Ali M., Seyed A.K., Hooshang F., Alireza Y. 2019. Improving sweet corn (Zea mays L. var saccharata) growth and yield using Pseudomonas fluorescens inoculation under varied watering regimes. Agricultural Water Management, 226, 105757. https://doi.org/10.1016/j.agwat.2019.105757
- 37. Zhang D., Xiaocong J., Qingjie D., Xiaoming S., Jianming L. 2018. Reducing the excessive evaporative demand improved photosynthesis capacity at low costs of irrigation via regulating water driving force and moderating plant water stress of two tomato cultivars. Agricultural Water Management, 199, 22–33. https://doi.org/10.1016/j.agwat.2017.11.014
- 38. Zhang J.J., Zhu X., Zhang J.Z., Guy R.D. 2021. Photosynthetic performance and growth responses of Liriope muscari (Decne.) L.H. Bailey (Asparagaceae) to different levels of irradiance in three seasons. Flora, 278, 151798. https://doi.org/10.1016/j. flora.2021.151798
- 39. Zhou J., Li P., Wang J. 2022. Effects of Light Intensity and Temperature on the Photosynthesis Characteristics and Yield of Lettuce. Horticulturae, 8(2), 178. https://doi.org/10.3390/horticulturae8020178
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e5409603-7b78-4461-8d10-b068ae813abe