Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 23, nr 1 | 44--49
Tytuł artykułu

Effect of strain rate on static elastic response of glass-polyester composite. Part 2, Analysis of experimental results

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is the second part of a study aimed at evaluating the influence of the strain rate of a plain weave GFRP laminate in a non-destructive static three-point bending test on the stress response of the material. It was found that the stress level during the entire course of the deflection rises with the increase in the strain rate. The relative change in the stress level is comparable for the 0/90 and 45/-45 samples. As the loading speed increases, the elastic modulus of the material also grows. For an increment in the strain rate from 1.11·10–3 to 5.57·10–1 1/s, the increase is 10% for the 0/90 samples and 17.7% for the 45/-45 samples. The dependence of the modulus on the strain rate is logarithmic. Based on the theoretical analysis, the cause of the observed effects of the strain rate on the material response was attributed to the viscoelastic behawior of the matrix (cured polymer resin) and the viscoelastic behavior of the system of fibers at the level of the laminate mesostructure.
Wydawca

Rocznik
Strony
44--49
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland, mateusz.koziol@polsl.pl
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • [1] Wiesner C.S., MacGillivray H., Loading Rate Effects on Tensile Properties and Fracture Toughness of Steel, Proceedings of The 1999 TAGSI Seminar on Fracture, Plastic Flow and Structural Integrity, Cambridge, UK, 29 April 1999.
  • [2] Gong F., Ye H., Luo Y., The effect of high loading rate on the behaviour and mechanical properties of coal-rock combined body, Shock and Vibration 2018, Article nr 4374530, DOI: 10.1155/2018/4374530.
  • [3] Klasztorny M., Nycz D.B., Modelling of linear elasticity and viscoelasticity of thermosets and unidirectional glass fibre-reinforced thermoset-matrix composites – Part 1: Theory of modeling, Composites Theory and Practice 2022, 22(1), 3-15.
  • [4] Klasztorny M., Nycz D.B., Modelling of linear elasticity and viscoelasticity of thermosets and unidirectional glass fibre-reinforced thermoset-matrix composites – Part 2: Homogenization and numerical analysis, Composites Theory and Practice 2022, 22(1), 25-39.
  • [5] Hyla I., Śleziona J., Kompozyty. Elementy Mechaniki i Projektowania, Wydawnictwo Politechniki Śląskiej, Gliwice 2004.
  • [6] Śleziona J., Podstawy technologii kompozytów, Wydawnictwo Politechniki Śląskiej, Gliwice 1998.
  • [7] Yurgartis S.W., Techniques for the quantification of composite mesostructure. Composites Science and Technology 1995, 53(2), 145-154, DOI: 10.1016/0266-3538(95)00013-5.
  • [8] Lisovsky A.F., Theory and practice of mesostructure formation in composite materials, A review, Journal of Superhard Materials 2020, 42, 129-144, DOI: 10.3103/S1063457620030065.
  • [9] Dziubiński M., Kiljański T., Sęk J., Podstawy teoretyczne i metody pomiarowe reologii, Wydawnictwo Politechniki Łódzkiej, Łódź 2015.
  • [10] Halliday D., Resnick R., Walker J., Podstawy fizyki, Tom 1, PWN, Warszawa 2015.
  • [11] Lakes R.S., Kulacki F.A., Viscoelastic Solids, CRC Press, Boca Raton 1999.
  • [12] Lemaitre J., Introduction to Elasticity and Viscoelasticity,https://booksite.elsevier.com/ (dostęp: 20.02.2023).
  • [13] Hyla I., Tworzywa sztuczne, Wydawnictwo Politechniki Śląskiej, Gliwice 2004.
  • [14] Kirste R.G., Kruse W.A., Ibel K., Determination of the conformation of polymers in the amorphous solid state and in concentrated solution by neutron diffraction, Polymer 1975, 16, 2, 120-124, DOI: 10.1016/0032-3861(75)90140-8.
  • [15] Pielichowski J., Puszyński A., Chemia polimerów, FOSZE, Rzeszów 2012.
  • [16] Rabek J.F., Współczesna wiedza o polimerach Tom 1, WN PWN, Warszawa 2017.
  • [17] Parsegian V.A., Van der Waals Forces, Cambridge University Press, Cambridge 2006.
  • [18] Wei K., Liang D., Mei M., Yang X., Chen L., A viscoelastic model of compression and relaxation behaviors in preforming process for carbon fiber fabrics with binder, Composites Part B 2019, 158, 1-9, DOI: 10.1016/j.compositesb.2018.09.038.
  • [19] Ma Y., Xiaoquan C., Zhang J., Zhao D., Huang W., Prediction of resin pocket geometry around rigid fiber inclusion in composite laminate by hot-pressing of prepregs, Journal of Composite Materials 2020, 54, 15, 1987-1999, DOI: 10.1177/0021998319889399.
  • [20] Puck A., Schurmann H., Failure analysis of FRP laminates by means of physically based phenomenological models, Composites Science and Technology 2002, 62, 12-13, 1633-1662, DOI: 10.1016/S0266-3538(01)00208-1.
  • [21] Bellini C., Borrelli R., Di Cocco V., Franchitti S., Iacoviello F., Mocanu L.P., Sorrentino L., Failure energy and stiffness of titanium lattice specimens produced by electron beam melting process, Material Design and Processing Communications 2021, 3, 6, e268.
  • [22] Bellini C., Di Cocco V., Iacoviello F., Sorrentino L., Failure energy and strength of Al/CFRP hybrid laminates under flexural load, Material Design and Processing Communications 2020, 2, 5, e109.
  • [23] Burzyński M., Paszkiewicz S., Piesowicz E., Irska I., Dydek K., Boczkowska A., Wysocki S., Sieminski J., Comparison study of the influence of carbon and halloysite nanotubes on the preparation and rheological behavior of linear low density polyethylene, Polimery 2020, 65, 2, 95-98.
  • [24] Kurzeja L., Szeluga U., Grishchuk S., Właściwości wisko-elastyczne i mechaniczne epoksydowanego nowolaku o-krezolowego, Zeszyty Naukowe Chemia Politechnika Śląska 1999, 311-314.
  • [25] Pusz S., Szeluga U., Nagel B., Czajkowska S., Galina H., Strzezik J., The influence of structural order of anthracite fillers on the curing behavior, morphology, and dynamic mechanical thermal properties of epoxy composites, Polymer Composites 2015, 36, 2, 336 347.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e51294a2-4cc6-43f0-9d8d-332577f6f6ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.