Warianty tytułu
Mikrobiologiczne ogniwa paliwowe z katodą Ni-Co
Języki publikacji
Abstrakty
With the increasing standard of living, the energy consumption increases as well. So, waste production, like wastewater, increases as well too. But, there is a possibility to combine energy production and wastewater treatment. Technical device that can accomplish this task is a microbial fuel cell. In microbial fuel cells activated sludge bacteria can be used for electricity production during wastewater treatment. One of the problems of this solution is a low current density obtained in microbial fuel cells. Nonetheless, it is possible to increase the current density by using the catalyst for electrodes. The possibility of wastewater treatment using the Ni-Co alloy as cathode catalyst for microbial fuel cells is presented in this paper. The measurements included a preparation of catalyst and comparison of changes in the concentration of COD, NH* and N03 in the reactor with aeration and with using a microbial fuel cell (with Ni-Co cathode). The reduction time for COD with the use of microbial fuel cell with the Ni-Co catalyst is similar to the reduction time with aeration. The current density (0.26 mA/cm2) and amount of energy (0.94 Wh) obtained in reactor (151) are low. But, the obtained amount of energy allows elimination of the energy needed for reactor aeration. It has been shown that the Ni-Co can be used as cathode catalyst in microbial fuel cells.
Wraz ze wzrostem poziomu życia wzrasta zarówno zużycie energii, jak i ilość ścieków. Istnieje jednak możliwość produkcji energii z jednoczesnym oczyszczaniem ścieków. Urządzeniem, które może zrealizować to zadanie jest mikrobiologiczne ogniwo paliwowe. W ogniwach tego typu bakterie osadu czynnego wykorzystane są do produkcji energii podczas oczyszczania ścieków, jednym z ograniczeń tego rozwiązania jest niska gęstość uzyskiwanego prądu. Możliwe jest jednak podwyższenie tego parametru przy wykorzystaniu odpowiedniego katalizatora elektrod. W artykule przedstawiono możliwość wykorzystania stopu Ni-Co jako katalizatora katody. Badania obejmowały przygotowanie elektrody oraz porównanie zmian stężenia ChZT, NHt' oraz N03 w reaktorze z napowietrzaniem i przy wykorzystaniu mikrobiologicznego ogniwa paliwowego (z katodą Ni-Co). Czas redukcji ChZT przy wykorzystaniu mikrobiologicznego ogniwa paliwowego jest porównywalny z czasem uzyskanym podczas napowietrzania. Gęstość prądu (0,26 mA/cm2) i ilość energii (0,94 Wh) uzyskanej w reaktorze (15 I) jest niska, jednak rozwiązanie to pozwala na eliminację ko¬nieczności napowietrzania reaktora. Wykazano więc możliwość wykorzystania stopu Ni-Co jako katalizatora katody w mikrobiologicznym ogniwie paliwowym.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
11--14
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- University of Opole, Faculty of Natural Science and Technoiogy, Department of Process Engineering, ul. Dmowskiego 7-9,45-365 Opole , barbara.wlodarczyk@uni.opole pl
autor
- University of Opole, Faculty of Natural Science and Technoiogy, Department of Process Engineering, ul. Dmowskiego 7-9,45-365 Opole , pawel.wlodarczyk@uni.opole pl
Bibliografia
- [1] Bond Daniel R., Derek R. Lovley. 2003. "Electricity production by Geobacter sulfurreducens attached to electrodes". Applied and Environmental Microbiology 69:1548-1555.
- [2] Chaudhuri Swades K., Derek R. Lovley. 2003. "Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells" Nature Biotechnology 21: 1229-1232.
- [3] Cheng Shaoan, Hong Liu, Bruce B. Logan. 2006. "Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nation and PTFE) in Single Chamber Microbial Fuel Cells" Environmental Science & Technology 40 (1): 364-369.
- [4] Dumas Claire Dumas, Alfonso Mollica, Damien Feron, Regine Basseguy, Luc Etcheverry, Alain Bergel. 2006. "Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials". Electrochimica Acta 53 (2): 468-473.
- [5] Huggins Tyler, Paul H. Fallgren, Song Jin, Zhiyong Jason Ren, 2013. "Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater". Journal of Microbial & Biochemical TechnologyS6:002.
- [6] Kim Hyung Joo, Hyung Soo Park, Moon Sik Hyun, In Seop Chang, Mia Kim, Byung Hong Kim. 2002. "A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefacians" Enzyme and Microbial Technology 30: 145-152.
- [7] Liu Hong, Ramanathan Ramnarayanan, Bruce E. Logan. 2004. "Production of electricity during wastewater treatment using a single chamber microbial fuel cell". Environmental Science & Tech¬nology 38: 2281-2285
- [8] Logan Bruce E. 2008. Microbial fuel cell. Hoboken: Wiley & Sons.
- [9] Logan Bruce E., Stefano Freguia, Peter Aelterman, Willy Verstraete, Korneel Rabaey. 2006. "Microbial Fuel Cells: Methodology and Technology". Environmental Science & Technology 40 (17): 5181-5192.
- [10] tomotowski Janusz, Adam Szpindor. 2002. Nowoczesnesystemy oczyszczania sciekdw. Warszawa: Arkady.
- [11] Martin Edith, Boris Tartakovsky, Oumarou Savadogo. 2011. "Cathode materials evaluation in microbial fuel cells: A compa¬rison of carbon, Mn203, Fe203 and platinum materials". Electrochimica Acta 53: 58-66.
- [12] McCarty Perry L, Jaeho Bae, Jeonghwan Kim. 2011. "Domestic wastewater treatment as a net energy producer - can this be achieved?". Environmental Science & Technology h5: 7100-7106.
- [13] McMurry John E., Carl A. Hoeger, Virginia E. Peterson, David S. Ballantine. 2013. Fundamentals of General, Organic, and Biological Chemistry. London: Pearson.
- [14] Park Hyung Soo, Byung Hong Kim, Hyo Suk Kim, Hyung Joo Kim, GwangTae Kim, Mia Kim, In Seop Chang, Yong Keun Park, Hyo Ihl Chang. 2001. "A novel electrochemically active and Fe(lll)-redu-cing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell". Anaerobe 7: 297-306.
- [15] Pham Cuong Anh, Sung Je Jung, Nguyet Phung, Jiyoung Lee, In Seop Chang, Byung Hong Kim, Hana Yi, Jongsik Chun. 2003. "A novel electrochemically active and Fe(lll)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell". FEMS Microbiology Letters 223: 129-134.
- [16] Rabaey Kornel, Willy Verstraete. 2005. "Microbial fuel cells: novel biotechnology for energy generation". Trends in Biotechnology 23: 291-298.
- [17] Ren Zhiyong, Hengjing Yan, Wei Wang, Matthew M. Mench, John M. Regan. 2011. "Characterization of microbial fuel cells at mi-crobially and electrochemically meaningful time scales". Environ¬mental Science & Technology 45 (6): 2435-2441.
- [18] US EPA. 2008. Report. Clean watersheds needs survey overview.
- [19] Wang Xin, Yuije Feng, H Lee. 2008. "Electricity production from beer brewery wastewater using single chamber microbial fuel cell". Water Science & Technology 57: 1117-1121.
- [20] Wtodarczyk Barbara, Pawet P. Wtodarczyk. 2015. "Comparison of electrooxidation efficiency in microbial fuel cell with a steel catalyst and aeration in wastewater treatment (in Polish)". Engi¬neering and Protection of Environment 18 (2): 189-198.
- [21 ] Wtodarczyk Barbara, Pawet P. Wtodarczyk. 2015. Electricity pro¬duction in microbial fuel cell with Cu-B alloy as catalyst of anode. W Civil engineering, QUAESTI 2015, 305-308. EDIS - Publishing nstitution of the University of Zilina.
- [22] Wtodarczyk Pawet P., Barbara Wtodarczyk. 2014. Possibility of using Ni-Co alloy as catalyst for microbial fuel cell. W Conference proceedings, 21st International Congress of Chemical and Process Engineering CHISA, P1.132. Czech Society of Chemical Engineering.
- [23] Wtodarczyk Pawet P., Barbara Wtodarczyk. 2015. "Analysis of the possibility of using stainless steel and copper boride alloy as catalyst for microbial fuel cell fuel electrode". Archives of Waste Management and Environmental Protection 17(1): 111-118.
- [24] Wtodarczyk Pawet P., Barbara Wtodarczyk. 2015. "Ni-Co alloy as catalyst for fuel electrode of hydrazine fuel cell". China-USA Business Review 14 (5): 269-279.
- [25] Wtodarczyk Pawet P., Barbara Wtodarczyk. 2015. "Possibility of using Ni-Co alloy as catalyst for oxygen electrode of fuel cell" Chinese Business Review 14 (3): 159-167.
- [26] Zhao Feng, Falk Harnisch, Uwe Schroder, Fritz Scholz, Peter Bog-danoff, Iris Herrmann. 2005. "Application of pyrolysed iron(ll) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells" Electrochemistry Communications! (12): 1405-1410.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e50ef655-1986-46e6-a97d-d802a94e7444