Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2017 | Vol. 65, no. 2 | 363--375
Tytuł artykułu

Direct runoff assessment using modified SME method in catchments in the Upper Vistula River Basin

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Correct determination of direct runoff is crucial for proper and safe dimensioning of hydroengineering structures. It is commonly assessed using SCS-CN method developed in the United States. However, due to deficiencies of this method, many improvements and modifications have been proposed. In this paper, a modified Sahu–Mishra–Eldo (SME) method was introduced and tested for three catchments located in the upper Vistula basin. Modification of SME method involved a determination of maximum potential retention S based on CN parameter derived from SCS-CN method. The modified SME method yielded direct runoff values very similar to those observed in the investigated catchments. Moreover, it generated significantly smaller errors in the direct runoff estimation as compared with SCS-CN and SME methods in the analyzed catchments. This approach may be used for estimating the runoff in uncontrolled catchments.
Wydawca

Czasopismo
Rocznik
Strony
363--375
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • Department of Sanitary Engineering and Water Management, University of Agriculture in Kraków, Kraków, Poland, a.walega@ur.krakow.pl
  • Department of Applied Mathematics, University of Agriculture in Kraków, Kraków, Poland
  • MGGP S.A., Kraków, Poland
Bibliografia
  • 1. ASCE (2009) Curve number hydrology: state of the practice. In: Hawkins RH, Ward TJ, Woodward DE, van Mullem JA (eds) American Society of Civil Engineers, Reston, USA
  • 2. Banasik K, Woodward DE (2010) Empirical determination of runoff Curve Number for a small agriculture catchment in Poland. In: Proceedings of the 2nd joint federal interagency conference, vol 27. Las Vegas, NV, USA
  • 3. Banasik K, Rutkowska A, Kohnová S (2014a) Retention and curve number variability in a small agricultural catchment: the probabilistic approach. Water 6:1118–1133
  • 4. Banasik K, Krajewski A, Sikorska A, Hejduk L (2014b) Curve Number estimation for a small urban catchment from recorded rainfall-runoff events. Arch Environ Prot 40(3):75–86
  • 5. Bedient PB, Huber WC, Vieux BE (2013) Hydrology and floodplain analysis. Pearson, London, p 813
  • 6. Calver A, Stewart E, Goodsell G (2009) Comparative analysis of statistical and catchment modelling approaches to river flood frequency estimation. J Flood Risk Manage 2:24–31
  • 7. Ciepielowski A. Study on relationships between parameters of the flood waves in selected cross sections. Scientific thesis and dissertations. SGGW, Warsaw, 1987
  • 8. Darvishan AK, Banasik K, Sadeghi SH, Gholami L, Hejduk L (2015) Effects of rain intensity and initial soil moisture on hydrological responses in laboratory conditions. Int Agroph. 29:165–173
  • 9. De Paola F, Ranucci A, Feo A (2013) Antecedent moisture condition (SCS) frequency assessment: a case study in southern Italy. Irrig Drain. 62:61–71
  • 10. Deshmukh DS, Chaube UC, Hailu AE, Gudeta DA, Kassa MT (2013) Estimation and comparison of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope. J Hydrol 492:89–101
  • 11. Di Baldassarre G, Schumann G, Bates PD, Freer JE, Beven KJ (2010) Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches. Hydrol Sci J 55(3):364–376
  • 12. Dingman SL (2008) Physical hydrology, 2nd edn. Waveland Press, Long Grove, p 395
  • 13. Domeneghetti A, Vorogushyn S, Castellarin A, Merz B, Brath A (2013) Probabilistic flood hazard mapping: effects of uncertain boundary conditions. Hydrol Earth Syst Sci 17:3127–3140
  • 14. Ebrahimian M, Nuruddin AAB, Soom MA, Neng LJ (2012) Runoff estimation in steep slope catchment with standard nd slope-adjustment curve number method. Pol J Environ Stud. 21:1191–1202
  • 15. Grimaldi S, Petroselli A, Romano N (2013a) Green-ampt curve number mixed procedure as an empirical tool for rainfall-runoff modelling in small and ungauged basins. Hydrol Process 27:1253–1264
  • 16. Grimaldi S, Petroselli A, Romano N (2013b) Curve-number/green–ampt mixed procedure for streamflow predictions in ungauged basins: parameter sensitivity analysis. Hydrol Process 27:1265–1275
  • 17. Hawkins RH, Ward TJ, Woodward DE, van Mullem JA (2009) Curve number hydrology: state of the practice. American Society of Civil Engineers, Reston
  • 18. Hingray B, Picouet C, Musy A (2014) Hydrology: a science for engineers. CRC Press, Boca Raton
  • 19. Hoes O, Nelen F (2005) Continuous simulation or event-based modelling to estimate flood probabilities? WIT Trans Ecol Environ 80:3–10
  • 20. Hong Y, Adler RF (2007) Estimation of global SCS curve numbers using satellite remote sensing and geospatial data. Int J Remote Sens 29(2):471–477
  • 21. Kowalik T, Wałęga A (2015) Estimation of CN parameter for small agricultural watersheds using asymptotic functions. Water 7(3):939–955
  • 22. Krzanowski S, Miler AT, Walega A (2013), The effect of moisture conditions on estimation of the CN parameter value in the mountain catchment. Infrastructure and ecology of rural areas. 3/IV, 105–117 (In Polish)
  • 23. Maidment DW, Hoogerwerf TN (2002) Parameter sensitivity in hydrologic modeling, technical report. The University of Texas at Austin, Austin
  • 24. McCuen R (2003) Modeling hydrologic change: statistical methods. Lewis Publishers, Boca Raton
  • 25. Mishra SK, Singh VP (2002) SCS-CN-based hydrologic simulation package. In: Singh VP, Frevert DK (eds) Mathematical models of small watershed hydrology and applications, water resources publs. LLC, Highlands Ranch, pp 391–464
  • 26. Mishra SK, Singh VP (2003) Soil conservation service curve number (SCS-CN) methodology. Kluwer Academic Publ, Dordrec
  • 27. Mishra SK, Jain MK, Bhunya PK, Singh VP (2005) Field applicability of the SCS-CN-based Mishra-Singh general model and its variants. Water Resour Manag. 19(1):37–62
  • 28. Moriasi DN, Arnold JG, van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am Soc Agric Biol Eng. 50:885–900
  • 29. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part-I: a discussion of principles. J Hydrol 10:282–290
  • 30. Petroselli A, Grimaldi S, Romano N (2013) Curve-number/green-ampt mixed procedure for net rainfall estimation: a case study of the mignone watershed, IT. Proced Environ Sci 19:113–121
  • 31. Policht-Latawiec A, Kanownik W, Jurek A (2016) The effect of cooling water discharge from the power station on the quality of the Skawinka River water. Carpath J Earth Environ Sci 11(2):427–435
  • 32. Ponce VM, Hawkins RH (1996) Runoff curve number: has it reached maturity? J Hydrol Eng 1(1):11–19
  • 33. Rallison RE, Miller N (1981). Past, present, and future SCS runoff procedurę. In: Rainfall-runoff relationship. Proc of the international symphosium on rainfall-runoff modelling. Missisipi, Missisipi State University, p 353–364
  • 34. Rutkowska A, Kohnová S, Banasik K, Szolgay J, Karabowá B (2015) Probabilistic properties of a curve number: a case study for small polish and slovak carpathian basins. J Mt Sci 12(3):533–548
  • 35. Sahu RK, Mishra SK, Eldho TI, Jain MK (2007) An advanced soil moisture accounting procedure for SCS curve number method. Hydrol Process 21(21):2872–2881
  • 36. Sahu RK, Mishra SK, Eldho TI (2010) An improved AMC-coupled runoff curve number model. Hydrol Process 24(20):2834–2839
  • 37. Sahu RK, Mishra SK, Eldho TI (2012) Performance evaluation of modified versions of SCS curve number method for two watersheds of Maharashtra, India. ISH J Hydraul Eng 18(1):27–36
  • 38. Serinaldi F, Grimaldi S (2011) Synthetic design hydrographs based on distribution functions with finite support. J Hydrol Eng 16(5):434–446
  • 39. Singh PK, Mishra SK, Berndtsson R, Jain MK, Pandey RP (2015) Development of a modified SMA based MSCS-CN model for runoff estimation. Water Resour Manage. doi:10.1007/s11269-015-1048-1
  • 40. Soulis KX, Valiantzas JD (2012) SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds – the two-CN system approach. Hydrol Earth Syst Sci 16:1001–1101
  • 41. USDA Natural Resources Conservation Service (2004), Hydrology. In: National engineering handbook; USDA soil conservation service: Washington, Chapter 10
  • 42. Wałęga A, Rutkowska A (2015) Usefulness of the modified NRCS-CN Method for the assessment of direct runoff in a mountain catchment. Acta Geophys 63(5):1423–1446
  • 43. Wałęga A, Drożdżal E, Piórecki M, Radoń R (2012) Some problems of hydrology modeling of outflow from ungauged catchments with aspects of flood maps design. Acta Scientiarum Polonorum, Formatio Circumiectus 11(3):57–68 (in Polish)
  • 44. Wałęga A, Rutkowska A, Policht-Latawiec A (2014) Sensitivity of Beta and Weibull synthetic unit hydrographs to input parameter changes. Pol J Environ Stud 23(1):221–229
  • 45. Wałęga A, Michalec B, Cupak A, Grzebinoga M (2015) Comparison of SCS-CN Determination methodologies in a heterogeneous catchment. J Mt Sci 12(5):1084–1094
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-e50a8c1b-be3a-4e6a-b4a2-213c6243e9fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.